Working with random processes
In this recipe, we will examine a simple example of a random process that models the number of bus arrivals at a stop over time. This process is called a Poisson process. A Poisson process, , has a single parameter, , which is usually called the intensity or rate, and the probability that takes the value at a given time is given by the following formula:
This equation describes the probability that buses have arrived by time . Mathematically, this equation means that has a Poisson distribution with the parameter . There is, however, an easy way to construct a Poisson process by taking sums of inter-arrival times that follow an exponential distribution. For instance, let be the time between the ()-st arrival and the -th arrival, which are exponentially distributed with parameter . Now, we take the following equation:
Here, the number is the maximum such that . This is the construction that we will work through in this recipe. We will...