Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with Keras

You're reading from   Advanced Deep Learning with Keras Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788629416
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras FREE CHAPTER 2. Deep Neural Networks 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods Other Books You May Enjoy Index

Principles of VAEs

In a generative model, we're often interested in approximating the true distribution of our inputs using neural networks:

Principles of VAEs

(Equation 8.1.1)

In the preceding equation,

Principles of VAEs

are the parameters determined during training. For example, in the context of the celebrity faces dataset, this is equivalent to finding a distribution that can draw faces. Similarly, in the MNIST dataset, this distribution can generate recognizable handwritten digits.

In machine learning, to perform a certain level of inference, we're interested in finding

Principles of VAEs

, a joint distribution between inputs, x, and the latent variables, z. The latent variables are not part of the dataset but instead encode certain properties observable from inputs. In the context of celebrity faces, these might be facial expressions, hairstyles, hair color, gender, and so on. In the MNIST dataset, the latent variables may represent the digit and writing styles.

Principles of VAEs

is practically a distribution of input data points...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime