Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Statistics and Machine Learning with R Workshop

You're reading from   The Statistics and Machine Learning with R Workshop Unlock the power of efficient data science modeling with this hands-on guide

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781803240305
Length 516 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Liu Peng Liu Peng
Author Profile Icon Liu Peng
Liu Peng
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1:Statistics Essentials
2. Chapter 1: Getting Started with R FREE CHAPTER 3. Chapter 2: Data Processing with dplyr 4. Chapter 3: Intermediate Data Processing 5. Chapter 4: Data Visualization with ggplot2 6. Chapter 5: Exploratory Data Analysis 7. Chapter 6: Effective Reporting with R Markdown 8. Part 2:Fundamentals of Linear Algebra and Calculus in R
9. Chapter 7: Linear Algebra in R 10. Chapter 8: Intermediate Linear Algebra in R 11. Chapter 9: Calculus in R 12. Part 3:Fundamentals of Mathematical Statistics in R
13. Chapter 10: Probability Basics 14. Chapter 11: Statistical Estimation 15. Chapter 12: Linear Regression in R 16. Chapter 13: Logistic Regression in R 17. Chapter 14: Bayesian Statistics 18. Index 19. Other Books You May Enjoy

Summary

This chapter provides a comprehensive introduction to Bayesian statistics, beginning with an exploration of the fundamental Bayes’ theorem. We delved into its components, starting with understanding the generative model, which helps us simulate data and examine how changes in parameters affect the data generation process.

We then focused on understanding the prior distribution, an essential part of Bayesian statistics that represents our prior knowledge about an uncertain parameter. This was followed by an introduction to the likelihood function, a statistical function that determines how likely it is for a set of observations to occur given specific parameter values.

Next, we introduced the concept of the posterior model. This combines our prior distribution and likelihood to give a new probability distribution that represents updated beliefs after having seen the data. We also explored more complex models, such as the normal-normal model, wherein both the likelihood...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image