Hyperparameter tuning with BQML
BQML allows you to fine-tune hyperparameters when building ML models through the use of CREATE MODEL
statements. This process, known as hyperparameter tuning, is a commonly employed method for enhancing model accuracy by finding the ideal set of hyperparameters.
Here’s an example BigQuery SQL statement:
{CREATE OR REPLACE MODEL} model_name OPTIONS(Existing Training Options, NUM_TRIALS = int64_value, [, MAX_PARALLEL_TRIALS = int64_value ] [, HPARAM_TUNING_ALGORITHM = { 'VIZIER_DEFAULT' | 'RANDOM_SEARCH' | 'GRID_SEARCH' } ] [, hyperparameter={HPARAM_RANGE(min, max) | HPARAM_CANDIDATES([candidates]) }... ] [, HPARAM_TUNING_OBJECTIVES = { 'R2_SCORE' | 'ROC_AUC' | ... } ] [, DATA_SPLIT_METHOD = { 'AUTO_SPLIT' | 'RANDOM' | 'CUSTOM' | 'SEQ' | 'NO_SPLIT' } ]...