Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Statistics for Machine Learning

You're reading from   Statistics for Machine Learning Techniques for exploring supervised, unsupervised, and reinforcement learning models with Python and R

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781788295758
Length 442 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Pratap Dangeti Pratap Dangeti
Author Profile Icon Pratap Dangeti
Pratap Dangeti
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Journey from Statistics to Machine Learning FREE CHAPTER 2. Parallelism of Statistics and Machine Learning 3. Logistic Regression Versus Random Forest 4. Tree-Based Machine Learning Models 5. K-Nearest Neighbors and Naive Bayes 6. Support Vector Machines and Neural Networks 7. Recommendation Engines 8. Unsupervised Learning 9. Reinforcement Learning

SARSA on-policy TD control


State-action-reward-state-action (SARSA) is an on-policy TD control problem, in which policy will be optimized using policy iteration (GPI), only time TD methods used for evaluation of predicted policy. In the first step, the algorithm learns an SARSA function. In particular, for an on-policy method we estimate qπ (s, a) for the current behavior policy π and for all states (s) and actions (a), using the TD method for learning vπ. Now, we consider transitions from state-action pair to state-action pair, and learn the values of state-action pairs:

This update is done after every transition from a non-terminal state St. If St+1 is terminal, then Q (St+1, At+1) is defined as zero. This rule uses every element of the quintuple of events (St, At, Rt, St+1, At+1), which make up a transition from one state-action pair to the next. This quintuple gives rise to the name SARSA for the algorithm.

As in all on-policy methods, we continually estimate qπ for the behavior policy...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image