Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Statistics Cookbook

You're reading from   R Statistics Cookbook Over 100 recipes for performing complex statistical operations with R 3.5

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789802566
Length 448 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Francisco Juretig Francisco Juretig
Author Profile Icon Francisco Juretig
Francisco Juretig
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with R and Statistics FREE CHAPTER 2. Univariate and Multivariate Tests for Equality of Means 3. Linear Regression 4. Bayesian Regression 5. Nonparametric Methods 6. Robust Methods 7. Time Series Analysis 8. Mixed Effects Models 9. Predictive Models Using the Caret Package 10. Bayesian Networks and Hidden Markov Models 11. Other Books You May Enjoy

Choosing the best model with the forecast package

Based on the partial autocorrelation function (PACF) and ACF plots, we usually define a model that matches the data reasonably well. We can choose the best model by comparing their Aikake information criterion (AIC) values, and picking the model with the smallest value.

However, this is not very practical when we need to work with many time series. The forecast package offers a function that is quite often used in the industry, which is the auto.arima() function. With this function, we can specify the maximum number of p,q orders that we want to try, along with the maximum P,Q orders for the seasonal part. It has a very important parameter called stepwise, which governs how the search is done. If we want it done by searching among all possible models, we want stepwise=FALSE. It is certainly the best option when the model can...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image