Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Essentials

You're reading from   R Deep Learning Essentials A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781788992893
Length 378 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Joshua F. Wiley Joshua F. Wiley
Author Profile Icon Joshua F. Wiley
Joshua F. Wiley
Mark Hodnett Mark Hodnett
Author Profile Icon Mark Hodnett
Mark Hodnett
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning 2. Training a Prediction Model FREE CHAPTER 3. Deep Learning Fundamentals 4. Training Deep Prediction Models 5. Image Classification Using Convolutional Neural Networks 6. Tuning and Optimizing Models 7. Natural Language Processing Using Deep Learning 8. Deep Learning Models Using TensorFlow in R 9. Anomaly Detection and Recommendation Systems 10. Running Deep Learning Models in the Cloud 11. The Next Level in Deep Learning 12. Other Books You May Enjoy

Preface

Deep learning is probably the hottest technology in data science right now, and R is one of the most popular data science languages. However, R is not considered as an option for deep learning by many people, which is a shame, as R is a wonderful language for data science. This book shows that R is a viable option for deep learning, because it supports libraries such as MXNet and Keras.

When I decided to write this book, I had numerous goals. First, I wanted to show how to apply deep learning to various tasks, and not just to computer vision and natural language processing. This book covers those topics, but it also shows how to use deep learning for prediction, regression, anomaly detection, and recommendation systems. The second goal was to look at topics in deep learning that are not covered well elsewhere; for example, interpretability with LIME, deploying models, and using the cloud for deep learning. The last goal was to give an overall view of deep learning and not just provide machine learning code. I think I achieved this by discussing topics such as how to create datasets from raw data, how to benchmark models against each other, how to manage data when model building, and how to deploy your models. My hope is that by the end of this book, you will also be convinced that R is a valid choice for use in deep learning.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime