Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Social Media Analytics

You're reading from   Python Social Media Analytics Analyze and visualize data from Twitter, YouTube, GitHub, and more

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787121485
Length 312 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Baihaqi Siregar Baihaqi Siregar
Author Profile Icon Baihaqi Siregar
Baihaqi Siregar
Siddhartha Chatterjee Siddhartha Chatterjee
Author Profile Icon Siddhartha Chatterjee
Siddhartha Chatterjee
Michal Krystyanczuk Michal Krystyanczuk
Author Profile Icon Michal Krystyanczuk
Michal Krystyanczuk
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to the Latest Social Media Landscape and Importance 2. Harnessing Social Data - Connecting, Capturing, and Cleaning FREE CHAPTER 3. Uncovering Brand Activity, Popularity, and Emotions on Facebook 4. Analyzing Twitter Using Sentiment Analysis and Entity Recognition 5. Campaigns and Consumer Reaction Analytics on YouTube – Structured and Unstructured 6. The Next Great Technology – Trends Mining on GitHub 7. Scraping and Extracting Conversational Topics on Internet Forums 8. Demystifying Pinterest through Network Analysis of Users Interests 9. Social Data Analytics at Scale – Spark and Amazon Web Services

Data analysis


Introduction to topic models

As per Wikipedia, a topic model is defined as follows :

"In machine learning and natural language processing, a topic model is a type of statistical model for discovering the abstract "topics" that occur in a collection of documents. Topic modeling is a frequently used text-mining tool for discovery of hidden semantic structures in a text body."

Topic models are essentially iterative algorithms that work with document feature matrices, to use overlapping features to group documents together. Features could simply be all the words in a sentence, or selected features such as nouns or named entities, and so on. To explain in a simplistic manner, we imagine that we have a corpus of documents of mixed subjects and we use words as features to represent a document. If we had to analyse these documents using topic models, and the topic model would group words like "team", "match", "game", and "score" in a single topic (as these word frequently appear together...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime