Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Natural Language Processing Cookbook

You're reading from   Python Natural Language Processing Cookbook Over 50 recipes to understand, analyze, and generate text for implementing language processing tasks

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781838987312
Length 284 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Zhenya Antić Zhenya Antić
Author Profile Icon Zhenya Antić
Zhenya Antić
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Chapter 1: Learning NLP Basics 2. Chapter 2: Playing with Grammar FREE CHAPTER 3. Chapter 3: Representing Text – Capturing Semantics 4. Chapter 4: Classifying Texts 5. Chapter 5: Getting Started with Information Extraction 6. Chapter 6: Topic Modeling 7. Chapter 7: Building Chatbots 8. Chapter 8: Visualizing Text Data 9. Other Books You May Enjoy

Chapter 3: Representing Text – Capturing Semantics

Representing the meaning of words, phrases, and sentences in a form that's understandable to computers is one of the pillars of NLP processing. Machine learning, for example, represents each data point as a fixed-size vector, and we are faced with the question of how to turn words and sentences into vectors. Almost any NLP task starts with representing the text in some numeric form, and this chapter will show several ways of doing that. Once you've learned how to represent text as vectors, you will be able to perform tasks such as classification, which will be described in later chapters.

We will also learn how to turn phrases such as fried chicken into vectors, how to train a word2vec model, and how to create a small search engine with semantic search.

The following recipes will be covered in this chapter:

  • Putting documents into a bag of words
  • Constructing the N-gram model
  • Representing texts...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image