Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Learn how to apply powerful data analysis techniques with popular open source Python modules

Arrow left icon
Product type Paperback
Published in Oct 2014
Publisher
ISBN-13 9781783553358
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. Statistics and Linear Algebra 4. pandas Primer 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources
Index

Generating periodic signals


Many natural phenomena are regular and trustworthy like an accurate clock. Some phenomena exhibit patterns that seem regular. A group of scientists found three cycles in the sunspot activity with the Hilbert-Huang transform (see http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform). The cycles have a duration of 11, 22, and 100 years approximately. Normally, we would simulate a periodic signal using trigonometric functions such as a sine function. You probably remember a bit of trigonometry from high school. That's all we need for this example. Since we have three cycles, it seems reasonable to create a model, which is a linear combination of three sine functions. This just requires a tiny adjustment of the code for the autoregressive model. Refer to the periodic.py file in this book's code bundle for the following code:

from scipy.optimize import leastsq
import statsmodels.api as sm
import matplotlib.pyplot as plt
import numpy as np
def model(p, t):
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime