Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Science with Python

You're reading from   Practical Data Science with Python Learn tools and techniques from hands-on examples to extract insights from data

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801071970
Length 620 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Nathan George Nathan George
Author Profile Icon Nathan George
Nathan George
Arrow right icon
View More author details
Toc

Table of Contents (30) Chapters Close

Preface 1. Part I - An Introduction and the Basics
2. Introduction to Data Science FREE CHAPTER 3. Getting Started with Python 4. Part II - Dealing with Data
5. SQL and Built-in File Handling Modules in Python 6. Loading and Wrangling Data with Pandas and NumPy 7. Exploratory Data Analysis and Visualization 8. Data Wrangling Documents and Spreadsheets 9. Web Scraping 10. Part III - Statistics for Data Science
11. Probability, Distributions, and Sampling 12. Statistical Testing for Data Science 13. Part IV - Machine Learning
14. Preparing Data for Machine Learning: Feature Selection, Feature Engineering, and Dimensionality Reduction 15. Machine Learning for Classification 16. Evaluating Machine Learning Classification Models and Sampling for Classification 17. Machine Learning with Regression 18. Optimizing Models and Using AutoML 19. Tree-Based Machine Learning Models 20. Support Vector Machine (SVM) Machine Learning Models 21. Part V - Text Analysis and Reporting
22. Clustering with Machine Learning 23. Working with Text 24. Part VI - Wrapping Up
25. Data Storytelling and Automated Reporting/Dashboarding 26. Ethics and Privacy 27. Staying Up to Date and the Future of Data Science 28. Other Books You May Enjoy
29. Index

Data science project methodologies

When working on a large data science project, it's good to organize it into a process of steps. This especially helps when working as a team. We'll discuss a few data science project management strategies here. If you're working on a project by yourself, you don't necessarily need to exactly follow every detail of these processes. However, seeing the general process will help you think about what steps you need to take when undertaking any data science task.

Using data science in other fields

Instead of focusing primarily on data science and specializing there, one can also use these skills for their current career path. One example is using machine learning to search for new materials with exceptional properties, such as superhard materials (https://par.nsf.gov/servlets/purl/10094086) or using machine learning for materials science in general (https://escholarship.org/uc/item/0r27j85x). Again, anywhere we have data, we can use data science and related methods.

CRISP-DM

CRISP-DM stands for Cross-Industry Standard Process for Data Mining and has been around since the late 1990s. It's a six-step process, illustrated in the diagram below.

Figure 1.4: A reproduction of the CRISP-DM process flow diagram

This was created before data science existed as its own field, although it's still used for data science projects. It's easy to roughly implement, although the official implementation requires lots of documentation. The official publication outlining the method is also 60 pages of reading. However, it's at least worth knowing about and considering if you are undertaking a data science project.

TDSP

TDSP, or the Team Data Science Process, was developed by Microsoft and launched in 2016. It's obviously much more modern than CRISP-DM, and so is almost certainly a better choice for running a data science project today.

The five steps of the process are similar to CRISP-DM, as shown in the figure below.

Figure 1.5: A reproduction of the TDSP process flow diagram

TDSP improves upon CRISP-DM in several ways, including defining roles for people within the process. It also has modern amenities, such as a GitHub repository with a project template and more interactive web-based documentation. Additionally, it allows more iteration between steps with incremental deliverables and uses modern software approaches to project management.

Further reading on data science project management strategies

There are other data science project management strategies out there as well. You can read about them at https://www.datascience-pm.com/.

You can find the official guide for CRISP-DM here:

https://www.the-modeling-agency.com/crisp-dm.pdf

And the guide for TDSP is here:

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

Other tools

Other tools used by data scientists include Kanban boards, Scrum, and the Agile software development framework. Since data scientists often work with software engineers to implement data science products, many of the organizational processes from software engineering have been adopted by data scientists.

You have been reading a chapter from
Practical Data Science with Python
Published in: Sep 2021
Publisher: Packt
ISBN-13: 9781801071970
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime