Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Pandas 1.x Cookbook

You're reading from   Pandas 1.x Cookbook Practical recipes for scientific computing, time series analysis, and exploratory data analysis using Python

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781839213106
Length 626 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Theodore Petrou Theodore Petrou
Author Profile Icon Theodore Petrou
Theodore Petrou
Matthew Harrison Matthew Harrison
Author Profile Icon Matthew Harrison
Matthew Harrison
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Pandas Foundations 2. Essential DataFrame Operations FREE CHAPTER 3. Creating and Persisting DataFrames 4. Beginning Data Analysis 5. Exploratory Data Analysis 6. Selecting Subsets of Data 7. Filtering Rows 8. Index Alignment 9. Grouping for Aggregation, Filtration, and Transformation 10. Restructuring Data into a Tidy Form 11. Combining Pandas Objects 12. Time Series Analysis 13. Visualization with Matplotlib, Pandas, and Seaborn 14. Debugging and Testing Pandas 15. Other Books You May Enjoy
16. Index

Appending new rows to DataFrames

When performing data analysis, it is far more common to create new columns than new rows. This is because a new row of data usually represents a new observation, and as an analyst, it is typically not your job to continually capture new data. Data capture is usually left to other platforms like relational database management systems. Nevertheless, it is a necessary feature to know as it will crop up from time to time.

In this recipe, we will begin by appending rows to a small dataset with the .loc attribute and then transition to using the .append method.

How to do it…

  1. Read in the names dataset, and output it:
    >>> import pandas as pd
    >>> import numpy as np
    >>> names = pd.read_csv('data/names.csv')
    >>> names
           Name  Age
    0  Cornelia   70
    1     Abbas   69
    2  Penelope    4
    3      Niko    2
    
  2. Let's create a list that contains some new data and use the ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime