At the moment supervised learning is the most common class of ML problems in the business domain. In Chapter 1, Predict the Class of a Flower from the Iris Dataset, we approached the Iris classification task by employing a powerful supervised learning classification algorithm called Random Forests, which at its core depends on a categorical response variable. In this chapter, besides the Random Forest approach, we also turn to yet another intriguing yet popular classification technique, called logistic regression. Both approaches present a unique solution to the prediction problem of breast cancer prognosis, while an iterative learning process is a common denominator. The logistic regression technique occupies center stage in this chapter, taking precedence over Random Forests. However, both learn from a test dataset containing...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine