Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Machine Learning Algorithms

You're reading from   Mastering Machine Learning Algorithms Expert techniques to implement popular machine learning algorithms and fine-tune your models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788621113
Length 576 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Machine Learning Model Fundamentals FREE CHAPTER 2. Introduction to Semi-Supervised Learning 3. Graph-Based Semi-Supervised Learning 4. Bayesian Networks and Hidden Markov Models 5. EM Algorithm and Applications 6. Hebbian Learning and Self-Organizing Maps 7. Clustering Algorithms 8. Ensemble Learning 9. Neural Networks for Machine Learning 10. Advanced Neural Models 11. Autoencoders 12. Generative Adversarial Networks 13. Deep Belief Networks 14. Introduction to Reinforcement Learning 15. Advanced Policy Estimation Algorithms 16. Other Books You May Enjoy

Perceptron


Perceptron was the name that Frank Rosenblatt gave to the first neural model in 1957. A perceptron is a neural network with a single layer of input linear neurons, followed by an output unit based on the sign(•) function (alternatively, it's possible to consider a bipolar unit whose output is -1 and 1). The architecture of a perceptron is shown in the following diagram:

Even if the diagram can appear as quite complex, a perceptron can be summarized by the following equation:

All the vectors are conventionally column-vectors; therefore, the dot product wTxi transforms the input into a scalar, then the bias is added, and the binary output is obtained using the step function, which outputs 1 when z > 0 and 0 otherwise. At this point, a reader could object that the step function is non-linear; however, a non-linearity applied to the output layer is only a filtering operation that has no effect on the actual computation. Indeed, the output is already decided by the linear block, while...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image