Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning Algorithms

You're reading from   Mastering Machine Learning Algorithms Expert techniques to implement popular machine learning algorithms and fine-tune your models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788621113
Length 576 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Machine Learning Model Fundamentals 2. Introduction to Semi-Supervised Learning FREE CHAPTER 3. Graph-Based Semi-Supervised Learning 4. Bayesian Networks and Hidden Markov Models 5. EM Algorithm and Applications 6. Hebbian Learning and Self-Organizing Maps 7. Clustering Algorithms 8. Ensemble Learning 9. Neural Networks for Machine Learning 10. Advanced Neural Models 11. Autoencoders 12. Generative Adversarial Networks 13. Deep Belief Networks 14. Introduction to Reinforcement Learning 15. Advanced Policy Estimation Algorithms 16. Other Books You May Enjoy

Summary


In this chapter, we discussed the main principles of adversarial training, and explained the roles of two players: the generator and discriminator. We described how to model and train them using a minimax approach whose double goal is to force the generator to learn the true data distribution pdata, and get the discriminator to distinguish perfectly between true samples (belonging to pdata) and unacceptable ones. In the same section, we analyzed the inner dynamics of a Generative Adversarial Network and some common problems that can slow down the training process and lead to a sub-optimal final configuration.

One of the most difficult problems experienced with standard GANs arises when the data generating process and the generator distribution have disjointed support. In this case, the Jensen-Shannon divergence becomes constant and doesn't provide precise information about the distance. An excellent alternative is provided by the Wasserstein measure, which is employed in a more efficient...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime