Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with the Elastic Stack

You're reading from   Machine Learning with the Elastic Stack Gain valuable insights from your data with Elastic Stack's machine learning features

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781801070034
Length 450 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Camilla Montonen Camilla Montonen
Author Profile Icon Camilla Montonen
Camilla Montonen
Rich Collier Rich Collier
Author Profile Icon Rich Collier
Rich Collier
Bahaaldine Azarmi Bahaaldine Azarmi
Author Profile Icon Bahaaldine Azarmi
Bahaaldine Azarmi
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1 – Getting Started with Machine Learning with Elastic Stack
2. Chapter 1: Machine Learning for IT FREE CHAPTER 3. Chapter 2: Enabling and Operationalization 4. Section 2 – Time Series Analysis – Anomaly Detection and Forecasting
5. Chapter 3: Anomaly Detection 6. Chapter 4: Forecasting 7. Chapter 5: Interpreting Results 8. Chapter 6: Alerting on ML Analysis 9. Chapter 7: AIOps and Root Cause Analysis 10. Chapter 8: Anomaly Detection in Other Elastic Stack Apps 11. Section 3 – Data Frame Analysis
12. Chapter 9: Introducing Data Frame Analytics 13. Chapter 10: Outlier Detection 14. Chapter 11: Classification Analysis 15. Chapter 12: Regression 16. Chapter 13: Inference 17. Other Books You May Enjoy Appendix: Anomaly Detection Tips

Summary

To summarize what we discussed in this chapter, we covered the genesis story of ML in IT—born out of the necessity to automate analysis of the massive, ever-expanding growth of collected data within enterprise environments. We also got a more intuitive understanding of the different types of ML in Elastic ML, which includes both unsupervised anomaly detection and supervised data frame analysis.

As we journey through the rest of the chapters, we will often be mapping the use cases of the problems we're trying to solve to the different modes of operation of Elastic ML.

Remember that if the data is a time series, meaning that it comes into existence routinely over time (metric/performance data, log files, transactions, and so on), it is quite possible that Elastic ML's anomaly detection is all you'll ever need. As you'll see, it is incredibly flexible and easy to use and accomplishes many use cases on a broad variety of data. It's kind of a Swiss Army knife! A large amount of this book (Chapters 3 through 8) will be devoted to how to leverage anomaly detection (and the ancillary capability of forecasting) to get the most out of your time series data that is in the Elastic Stack.

If you are more interested in finding unusual entities within a population/cohort (User/Entity Behavior), you might have a tricky decision between using population analysis in anomaly detection versus outlier detection in data frame analytics. The primary factor may be whether or not you need to do this in near real time—in which case you might likely choose population analysis. If near real time is not necessary and/or if you require the consideration of multiple features simultaneously, you would choose outlier detection. See Chapter 10, for more detailed information about the comparison and benefits of each approach.

That leaves many other use cases that require a multivariate approach to modeling. This would not only align with the previous example of real estate pricing but also encompass the use cases of language detection, customer churn analysis, malware detection, and so on. These will fall squarely in the realm of the supervised ML of data frame analytics and be covered in Chapters 11 through 13.

In the next chapter, we will get down and dirty with understanding how to enable Elastic ML and how it works in an operational sense. Buckle up and enjoy the ride!

You have been reading a chapter from
Machine Learning with the Elastic Stack - Second Edition
Published in: May 2021
Publisher: Packt
ISBN-13: 9781801070034
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image