Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with R Quick Start Guide

You're reading from   Machine Learning with R Quick Start Guide A beginner's guide to implementing machine learning techniques from scratch using R 3.5

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781838644338
Length 250 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Iván Pastor Sanz Iván Pastor Sanz
Author Profile Icon Iván Pastor Sanz
Iván Pastor Sanz
Arrow right icon
View More author details
Toc

R Fundamentals for Machine Learning

You're probably used to hearing words such as big data, machine learning, and artificial intelligence in the news. It's amazing how many new applications of these terms appear every day. Recommender systems such as the ones used by Amazon, Netflix, search engines, stock market analysis, or even for speech recognition are only a few examples. Different new algorithms and new techniques emerge every year, and many of them are based on previous approaches or combine different existing algorithms. At the same time, there are more and more tutorials and courses focused on teaching them.

Many courses have a number of common limitations such as solving toy problems or focusing all of their attention on algorithms. These limitations could mean that you obtain an incorrect understanding of the data modeling approach. Thus, the modeling process entails important steps before, as business and data understanding, and data preparation. Without these previous steps, it isn't guaranteed that the model will be applied without flaws in the future. Furthermore, model development does not finish after finding an appropriate algorithm. The performance evaluation of the model, its interpretability, and the model's deployment are also very relevant and the culmination of the modeling process.

In this book, we will learn how to develop different predictive models. The applications or examples included in this book have been based on the financial sector, and will also try to create a theoretical framework that helps you understand the causes of the financial crisis, which had a dramatic impact on countries around the world.

All of the algorithms and techniques that are used in this book will be applied using the R language. Nowadays, R is one of the major languages for data science. There is an enormous debate about which language is better, R or Python. Both languages have many strengths and some weakness as well.

In my experience, R is more powerful for the analysis of financial data. I've found many R libraries that specialize in this field, but not so many in Python. Nevertheless, credit risk and financial information is very much related to the treatment of time series, which, at least in my opinion, performs better in Python. The use of recurrent or Long Short-Term Memory (LSTM) networks are better implemented in Python as well. However, R provides more powerful libraries for data visualization and interactive style. It is recommended that you use both R and Python interchangeably, depending on your project. Good resources on machine learning with Python are available at Packt, some of which are listed here for your convenience:

In this chapter, let's revive your knowledge on machine learning and get you started with coding using R.

The following topics will be covered in this chapter:

  • R and RStudio installation
  • Some basics commands
  • Objects, special cases, and basic operators in R
  • Controlling code flow
  • All about R packages
  • Taking further steps
You have been reading a chapter from
Machine Learning with R Quick Start Guide
Published in: Mar 2019
Publisher: Packt
ISBN-13: 9781838644338
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image