Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Machine Learning for Healthcare Analytics Projects
Machine Learning for Healthcare Analytics Projects

Machine Learning for Healthcare Analytics Projects: Build smart AI applications using neural network methodologies across the healthcare vertical market

eBook
€8.99 €15.99
Paperback
€19.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Machine Learning for Healthcare Analytics Projects

Diabetes Onset Detection

The far-ranging developments in healthcare over the past few years have led to a huge collection of data that can be used for analysis. We can now easily predict the onset of various illnesses before they even happen, using a technology called neural networks. In this chapter, we are going to use a deep neural network and a grid search to predict the onset of diabetes for a set of patients. We will learn a lot about deep neural networks, the parameters that are used to optimize them, and how to choose the correct parameters for each.

We will cover the following topics in this chapter:

  • Detecting diabetes using a deep learning grid search
  • Introduction to the dataset
  • Building a Keras model
  • Performing a grid search using scikit-learn
  • Reducing overfitting using dropout regularization
  • Finding the optimal hyperparameters
  • Generating predictions using optimal...

Detecting diabetes using a grid search

We will be predicting diabetes on a of patients by using a deep learning algorithm, which we will optimize with a grid search to find the optimal hyperparameters. We are going to be doing this project in Jupyter Notebook, as follows:

  1. Start by opening up Command Prompt in Windows or Terminal in Linux systems. We will navigate to our project directory using the cd command.
  2. Our next step is to open the Jupyter Notebook by typing the following command:
jupyter notebook
Alternatively, you can use the jupyter lab command to open an instance of Jupyter Lab, which is just a better version of Notebook.
  1. Once the Notebook is open, we will rename the unnamed file to Deep Learning Grid Search.
  2. We will then import our packages using general import statements. We will print the version numbers, as shown in the following screenshot:

Keras has two options...

Introduction to the dataset

Our next step is to import the Pima Indians diabetes dataset, which contains the details of about 750 patients:

  1. The dataset that we need can be found at https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv. We can import it by using the following line:
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
  1. If we navigate to the preceding URL, we can see a lot of raw information. Once we have imported the dataset, we have to define column names. We will do this using the following lines of code:
names = ['n_pregnant', 'glucose_concentration', 'blood_pressure (mm Hg)', 'skin_thickness (mm)', 'serum_insulin (mu U/ml)', 'BMI', 'pedigree_function', 'age', 'class']

As can...

Building our Keras model

We'll now start building our Keras model, which is a deep learning algorithm:

  1. The first thing that we're going to do is import the necessary packages and layers. We will do that by running the following lines of code:
from sklearn.model_selection import GridSearchCV, KFold
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.optimizers import Adam

In the preceding code snippet , GridSearchCV is the function we will use to perform a grid search, and KFold will be used for performing the k-fold cross-validation. KerasClassifier is used as the wrapper. Adam is the optimizer that we will be using for this model; the rest of the functions are all general functions used to define the model:

  1. Let's start by defining the model. We will use a create_model() function, because...

Performing a grid search using scikit-learn

It's now time to prepare our grid search algorithm. We will follow a step-by-step process to make it easier to understand and execute:

  1. The first thing that we will do is copy the create_model() function, which we created in the Building a Keras model section, and paste it into a new cell, as shown in the following screenshot:
  1. Now, we will define a random seed through NumPy. This helps us to create results that are reproducible. We are also going to add random initialization of weights and random divisions of data into different groups. We will set a starting point so that we have the same initialization and the same divisions for all the data. This can be done by adding a few lines of code above the create_model() function, as shown in the following screenshot:
  1. Our next step is to initialize the KerasClassifier that we imported...

Reducing overfitting using dropout regularization

We will now use the information we gained in the Performing a grid search using scikit-learn section to optimize other aspects of our model. It looks like we might be overfitting the data a little bit, as we are getting better results on our training data than our testing data. We're now going to look at adding in dropout regularization:

  1. Our first step is to copy the code that is present in the grid search cell that we ran in the previous section, and paste it in a fresh cell. We will keep the general structure of the code and play around with some of the parameters present.
  1. We will then import the Dropout function from keras.layers using the following line:
from keras.layers import Dropout
  1. We will now convert the learning rate into a variable by defining it in the Adam optimizer code block. We will use learn_rate as...

Finding the optimal hyperparameters

We're now going to optimize the weight initialization that we're applying to the end of each of these neurons:

  1. To do this, we will first copy the code from the cell that we ran in the previous Reducing overfitting using dropout regularization section, and paste it into a new one. In this section, we won't be changing the general structure of the code; instead, we will be modifying some parameters and optimizing the search.
  2. We now know the best learn_rate and dropout_rate, so we are going to hardcode these and remove them. We are also going to remove the Dropout layers that we added in the previous section. We will modify the learning rate of the Adam optimizer to 0.001, as this is the best value that we found.
  3. Since we are trying to optimize the activation and init variables, we will define them in the create_model() function...

Optimizing the number of neurons

Let's now move on to tuning the number of neurons in each of these layers. Since we are following the same steps as the preceding sections, we will go through all these steps and do a recap with the code snippet at the end. So, let's get started with the following steps:

  1. We will start by copying the code from the cell used in the Finding the optimal hyperparameters section, and paste it in a new cell. In this new cell, we will play around with the number of neurons by modifying some of the variables.
  2. We will convert the total number of neurons present in each hidden layer into variables, such as neuron1 and neuron2. We will also define these variables in the create_model() function, so that they are called every time we execute it.
  3. We will also change the kernel_initializer and activation values to tanh and normal, since those were the...

Generating predictions using optimal hyperparameters

We know now some optimal hyperparameters for our grid search. We will use these to predict the onset of diabetes for the patients in our dataset. To do this, we will carry out the following steps:

  1. We will predict whether diabetes will occur for every example in the dataset by using the predict() function, as shown in the following code snippet:
# generate predictions with optimal hyperparameters
y_pred = grid.predict(X_standardized)
  1. We will then use the .shape command to see what the predictions look like. The following screenshot shows the output for this step:

From the preceding screenshot, we can see that there are 392 predictions with a numerical value for each.

  1. Let's print off the first five and see what they look like. We get the following output:
  1. We are now going to do a classification report and get an...

Summary

In this chapter, we built a deep neural network in Keras and we found the optimal hyperparameters using the scikit-learn grid search. We also learned how to optimize a network by tuning the hyperparameters. Note that the results that we get might not be the same for all of us, but as long as we get similar predictions, we can consider our model a success. When you start training on new data, or if you're trying to address a different problem with a different dataset, you will have to go through this process again. In this chapter, we also learned about deep learning and hyperparameter optimization and explored how to apply them to the network to predict the onset of diabetes on a huge dataset of patients.

In the next chapter, we will look at how to classify DNA using machine algorithms.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Develop a range of healthcare analytics projects using real-world datasets
  • Implement key machine learning algorithms using a range of libraries from the Python ecosystem
  • Accomplish intermediate-to-complex tasks by building smart AI applications using neural network methodologies

Description

Machine Learning (ML) has changed the way organizations and individuals use data to improve the efficiency of a system. ML algorithms allow strategists to deal with a variety of structured, unstructured, and semi-structured data. Machine Learning for Healthcare Analytics Projects is packed with new approaches and methodologies for creating powerful solutions for healthcare analytics. This book will teach you how to implement key machine learning algorithms and walk you through their use cases by employing a range of libraries from the Python ecosystem. You will build five end-to-end projects to evaluate the efficiency of Artificial Intelligence (AI) applications for carrying out simple-to-complex healthcare analytics tasks. With each project, you will gain new insights, which will then help you handle healthcare data efficiently. As you make your way through the book, you will use ML to detect cancer in a set of patients using support vector machines (SVMs) and k-Nearest neighbors (KNN) models. In the final chapters, you will create a deep neural network in Keras to predict the onset of diabetes in a huge dataset of patients. You will also learn how to predict heart diseases using neural networks. By the end of this book, you will have learned how to address long-standing challenges, provide specialized solutions for how to deal with them, and carry out a range of cognitive tasks in the healthcare domain.

Who is this book for?

Machine Learning for Healthcare Analytics Projects is for data scientists, machine learning engineers, and healthcare professionals who want to implement machine learning algorithms to build smart AI applications. Basic knowledge of Python or any programming language is expected to get the most from this book.

What you will learn

  • Explore super imaging and natural language processing (NLP) to classify DNA sequencing
  • Detect cancer based on the cell information provided to the SVM
  • Apply supervised learning techniques to diagnose autism spectrum disorder (ASD)
  • Implement a deep learning grid and deep neural networks for detecting diabetes
  • Analyze data from blood pressure, heart rate, and cholesterol level tests using neural networks
  • Use ML algorithms to detect autistic disorders

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 30, 2018
Length: 134 pages
Edition : 1st
Language : English
ISBN-13 : 9781789532524
Category :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Oct 30, 2018
Length: 134 pages
Edition : 1st
Language : English
ISBN-13 : 9781789532524
Category :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 85.97
Healthcare Analytics Made Simple
€32.99
Data Science Algorithms in a Week
€32.99
Machine Learning for Healthcare Analytics Projects
€19.99
Total 85.97 Stars icon
Banner background image

Table of Contents

6 Chapters
Breast Cancer Detection Chevron down icon Chevron up icon
Diabetes Onset Detection Chevron down icon Chevron up icon
DNA Classification Chevron down icon Chevron up icon
Diagnosing Coronary Artery Disease Chevron down icon Chevron up icon
Autism Screening with Machine Learning Chevron down icon Chevron up icon
Another Book You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.3
(4 Ratings)
5 star 50%
4 star 0%
3 star 0%
2 star 25%
1 star 25%
Elliott0928 Oct 28, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
A useful book in excellent condition with helpful contents and hints
Amazon Verified review Amazon
Cesar C. Jun 30, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Buen libro
Amazon Verified review Amazon
Amazon Customer Apr 23, 2019
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
Print quality of this book is not good.Some printing content is difficult to read.The book is very less of content and I expected more practical examples.
Amazon Verified review Amazon
Amazon Customer Apr 12, 2020
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Read chapter 1. I might be the only one that has done so. 28 pages in and already numerous screenshots that do not match the text describing them. Multiple instances of the same exact code and output being described as having different results.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.