Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning NumPy Array

You're reading from   Learning NumPy Array Supercharge your scientific Python computations by understanding how to use the NumPy library effectively

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783983902
Length 164 pages
Edition Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Learning NumPy Array
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with NumPy FREE CHAPTER 2. NumPy Basics 3. Basic Data Analysis with NumPy 4. Simple Predictive Analytics with NumPy 5. Signal Processing Techniques 6. Profiling, Debugging, and Testing 7. The Scientific Python Ecosystem Index

Creating a multidimensional array


Now that we know how to create a vector, we are ready to create a multidimensional NumPy array. After we create the matrix, we will again want to display its shape (see the arrayattributes.py file in the Chapter02 folder of this book's code bundle), as shown in the following code snippets:

  • To create a multidimensional array, see the following code:

    In: m = array([arange(2), arange(2)])
    In: m
    Out:
    array([[0, 1],[0, 1]])
  • To display the array shape, see the following lines of code:

    In: m.shape
    Out: (2, 2)

We created a 2 x 2 array with the arange() function. Without any warning, the array() function appeared on the stage.

The array() function creates an array from an object that you give to it. The object needs to be array-like, for instance, a Python list. In the preceding example, we passed in a list of arrays. The object is the only required argument of the array() function. NumPy functions tend to have a lot of optional arguments with predefined defaults.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image