Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Julia Programming Projects

You're reading from   Julia Programming Projects Learn Julia 1.x by building apps for data analysis, visualization, machine learning, and the web

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781788292740
Length 500 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Adrian Salceanu Adrian Salceanu
Author Profile Icon Adrian Salceanu
Adrian Salceanu
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Julia Programming FREE CHAPTER 2. Creating Our First Julia App 3. Setting Up the Wiki Game 4. Building the Wiki Game Web Crawler 5. Adding a Web UI for the Wiki Game 6. Implementing Recommender Systems with Julia 7. Machine Learning for Recommender Systems 8. Leveraging Unsupervised Learning Techniques 9. Working with Dates, Times, and Time Series 10. Time Series Forecasting 11. Creating Julia Packages 12. Other Books You May Enjoy

Data harvesting through web scraping


The technique for extracting data from web pages using software is called web scraping. It is an important component of data harvesting, typically implemented through programs called web crawlers. Data harvesting or data mining is a useful technique, often used in data science workflows to collect information from the internet, usually from websites (as opposed to APIs), and then to process that data for different purposes using various algorithms. 

At a very high level, the process involves making a request for a web page, fetching its content, parsing its structure, and then extracting the desired information. This can be images, paragraphs of text, or tabular data containing stock information and prices, for example—pretty much anything that is present on a web page. If the content is spread across multiple web pages, the crawler will also extract the links and will automatically follow them to pull the rest of the pages, repeatedly applying the same...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image