Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
IPython Interactive Computing and Visualization Cookbook

You're reading from   IPython Interactive Computing and Visualization Cookbook Harness IPython for powerful scientific computing and Python data visualization with this collection of more than 100 practical data science recipes

Arrow left icon
Product type Paperback
Published in Sep 2014
Publisher
ISBN-13 9781783284818
Length 512 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cyrille Rossant Cyrille Rossant
Author Profile Icon Cyrille Rossant
Cyrille Rossant
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. A Tour of Interactive Computing with IPython FREE CHAPTER 2. Best Practices in Interactive Computing 3. Mastering the Notebook 4. Profiling and Optimization 5. High-performance Computing 6. Advanced Visualization 7. Statistical Data Analysis 8. Machine Learning 9. Numerical Optimization 10. Signal Processing 11. Image and Audio Processing 12. Deterministic Dynamical Systems 13. Stochastic Dynamical Systems 14. Graphs, Geometry, and Geographic Information Systems 15. Symbolic and Numerical Mathematics Index

Introducing the IPython notebook

The notebook is the flagship feature of IPython. This web-based interactive environment combines code, rich text, images, videos, animations, mathematics, and plots into a single document. This modern tool is an ideal gateway to high-performance numerical computing and data science in Python. This entire book has been written in the notebook, and the code of every recipe is available as a notebook on the book's GitHub repository at https://github.com/ipython-books/cookbook-code.

In this recipe, we give an introduction to IPython and its notebook. In Getting ready, we also give general instructions on installing IPython and the Python scientific stack.

Getting ready

You will need Python, IPython, NumPy, pandas, and matplotlib in this chapter. Together with SciPy and SymPy, these libraries form the core of the Python scientific stack (www.scipy.org/about.html).

Note

You will find full detailed installation instructions on the book's GitHub repository at https://github.com/ipython-books/cookbook-code.

We only give a summary of these instructions here; please refer to the link above for more up-to-date details.

If you're just getting started with scientific computing in Python, the simplest option is to install an all-in-one Python distribution. The most common distributions are:

We highly recommend Anaconda. These distributions contain everything you need to get started. You can also install additional packages as needed. You will find all the installation instructions in the links mentioned previously.

Note

Throughout the book, we assume that you have installed Anaconda. We may not be able to offer support to readers who use another distribution.

Alternatively, if you feel brave, you can install Python, IPython, NumPy, pandas, and matplotlib manually. You will find all the instructions on the following websites:

Note

Python 2 or Python 3?

Though Python 3 is the latest version at this date, many people are still using Python 2. Python 3 has brought backward-incompatible changes that have slowed down its adoption. If you are just getting started with Python for scientific computing, you might as well choose Python 3. In this book, all the code has been written for Python 3, but it also works with Python 2. We will give more details about this question in Chapter 2, Best Practices in Interactive Computing.

Once you have installed either an all-in-one Python distribution (again, we highly recommend Anaconda), or Python and the required packages, you can get started! In this book, the IPython notebook is used in almost all recipes. This tool gives you access to Python from your web browser. We covered the essentials of the notebook in the Learning IPython for Interactive Computing and Data Visualization book. You can also find more information on IPython's website (http://ipython.org/ipython-doc/stable/notebook/index.html).

To run the IPython notebook server, type ipython notebook in a terminal (also called the command prompt). Your default web browser should open automatically and load the 127.0.0.1:8888 address. Then, you can create a new notebook in the dashboard or open an existing notebook. By default, the notebook server opens in the current directory (the directory you launched the command from). It lists all the notebooks present in this directory (files with the .ipynb extension).

Note

On Windows, you can open a command prompt by pressing the Windows key and R, then typing cmd in the prompt, and finally by pressing Enter.

How to do it...

  1. We assume that a Python distribution is installed with IPython and that we are now in an IPython notebook. We type the following command in a cell, and press Shift + Enter to evaluate it:
    In [1]: print("Hello world!")
    Hello world!
    How to do it...

    Screenshot of the IPython notebook

    A notebook contains a linear succession of cells and output areas. A cell contains Python code, in one or multiple lines. The output of the code is shown in the corresponding output area.

  2. Now, we do a simple arithmetic operation:
    In [2]: 2+2
    Out[2]: 4

    The result of the operation is shown in the output area. Let's be more precise. The output area not only displays the text that is printed by any command in the cell, but it also displays a text representation of the last returned object. Here, the last returned object is the result of 2+2, that is, 4.

  3. In the next cell, we can recover the value of the last returned object with the _ (underscore) special variable. In practice, it might be more convenient to assign objects to named variables such as in myresult = 2+2.
    In [3]: _ * 3
    Out[3]: 12
  4. IPython not only accepts Python code, but also shell commands. These commands are defined by the operating system (mainly Windows, Linux, and Mac OS X). We first type ! in a cell before typing the shell command. Here, assuming a Linux or Mac OS X system, we get the list of all the notebooks in the current directory:
    In [4]: !ls *.ipynb
    notebook1.ipynb  ...

    On Windows, you should replace ls with dir.

  5. IPython comes with a library of magic commands. These commands are convenient shortcuts to common actions. They all start with % (the percent character). We can get the list of all magic commands with %lsmagic:
    In [5]: %lsmagic
    Out[5]: Available line magics:
    %alias  %alias_magic  %autocall  %automagic  %autosave  %bookmark  %cd  %clear  %cls  %colors  %config  %connect_info  %copy  %ddir  %debug  %dhist  %dirs  %doctest_mode  %echo  %ed  %edit  %env  %gui  %hist  %history  %install_default_config  %install_ext  %install_profiles  %killbgscripts  %ldir  %less  %load  %load_ext  %loadpy  %logoff  %logon  %logstart  %logstate  %logstop  %ls  %lsmagic  %macro  %magic  %matplotlib  %mkdir  %more  %notebook  %page  %pastebin  %pdb  %pdef  %pdoc  %pfile  %pinfo  %pinfo2  %popd  %pprint  %precision  %profile  %prun  %psearch  %psource  %pushd  %pwd  %pycat  %pylab  %qtconsole  %quickref  %recall  %rehashx  %reload_ext  %ren  %rep  %rerun  %reset  %reset_selective  %rmdir  %run  %save  %sc  %store  %sx  %system  %tb  %time  %timeit  %unalias  %unload_ext  %who  %who_ls  %whos  %xdel  %xmode
    
    Available cell magics:
    %%!  %%HTML  %%SVG  %%bash  %%capture  %%cmd  %%debug  %%file  %%html  %%javascript  %%latex  %%perl  %%powershell  %%prun  %%pypy  %%python  %%python3  %%ruby  %%script  %%sh  %%svg  %%sx  %%system  %%time  %%timeit  %%writefile

    Cell magics have a %% prefix; they concern entire code cells.

  6. For example, the %%writefile cell magic lets us create a text file easily. This magic command accepts a filename as an argument. All the remaining lines in the cell are directly written to this text file. Here, we create a file test.txt and write Hello world! in it:
    In [6]: %%writefile test.txt
            Hello world!
    Writing test.txt
    In [7]: # Let's check what this file contains.
            with open('test.txt', 'r') as f:
                print(f.read())
    Hello world!
  7. As we can see in the output of %lsmagic, there are many magic commands in IPython. We can find more information about any command by adding ? after it. For example, to get some help about the %run magic command, we type %run? as shown here:
    In [9]: %run?
    Type:        Magic function
    Namespace:   IPython internal
    ...
    Docstring:
    Run the named file inside IPython as a program.
    [full documentation of the magic command...]
  8. We covered the basics of IPython and the notebook. Let's now turn to the rich display and interactive features of the notebook. Until now, we have only created code cells (containing code). IPython supports other types of cells. In the notebook toolbar, there is a drop-down menu to select the cell's type. The most common cell type after the code cell is the Markdown cell.

    Markdown cells contain rich text formatted with Markdown, a popular plain text-formatting syntax. This format supports normal text, headers, bold, italics, hypertext links, images, mathematical equations in LaTeX (a typesetting system adapted to mathematics), code, HTML elements, and other features, as shown here:

    ### New paragraph 
    This is *rich* **text** with [links](http://ipython.org),
    equations:
    
    $$\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x)\,
                     \mathrm{e}^{-i \xi x}$$
    
    code with syntax highlighting: 
    ```python
    print("Hello world!")
    ``` 
    and images: 
    ![This is an image](http://ipython.org/_static/IPy_header.png)

    Running a Markdown cell (by pressing Shift + Enter, for example) displays the output, as shown in the following screenshot:

    How to do it...

    Rich text formatting with Markdown in the IPython notebook

    Tip

    LaTeX equations are rendered with the MathJax library. We can enter inline equations with $...$ and displayed equations with $$...$$. We can also use environments such as equation, eqnarray, or align. These features are very useful to scientific users.

    By combining code cells and Markdown cells, we can create a standalone interactive document that combines computations (code), text, and graphics.

  9. IPython also comes with a sophisticated display system that lets us insert rich web elements in the notebook. Here, we show how to add HTML, SVG (Scalable Vector Graphics), and even YouTube videos in a notebook.

    First, we need to import some classes:

    In [11]: from IPython.display import HTML, SVG, YouTubeVideo

    We create an HTML table dynamically with Python, and we display it in the notebook:

    In [12]: HTML('''
             <table style="border: 2px solid black;">
             ''' + 
             ''.join(['<tr>' + 
                      ''.join(['<td>{row},{col}</td>'.format(
                                     row=row, col=col
                                     ) for col in range(5)]) +
                      '</tr>' for row in range(5)]) +
             '''
             </table>
             ''')
    How to do it...

    An HTML table in the notebook

    Similarly, we can create SVG graphics dynamically:

    In [13]: SVG('''<svg width="600" height="80">''' + 
             ''.join(['''<circle cx="{x}" cy="{y}" r="{r}"
                                 fill="red"
                                 stroke-width="2"
                                 stroke="black">
                         </circle>'''.format(x=(30+3*i)*(10-i),
                                             y=30,
                                             r=3.*float(i)
                                             ) for i in range(10)]) + 
             '''</svg>''')
    How to do it...

    SVG in the notebook

    Finally, we display a YouTube video by giving its identifier to YoutubeVideo:

    In [14]: YouTubeVideo('j9YpkSX7NNM')
    How to do it...

    YouTube in the notebook

  10. Now, we illustrate the latest interactive features in IPython 2.0+, namely JavaScript widgets. Here, we create a drop-down menu to select videos:
    In [15]: from collections import OrderedDict
             from IPython.display import (display,
                                          clear_output,
                                          YouTubeVideo)
             from IPython.html.widgets import DropdownWidget
    In [16]: # We create a DropdownWidget, with a dictionary
             # containing the keys (video name) and the values
             # (Youtube identifier) of every menu item.
             dw = DropdownWidget(values=OrderedDict([
                               ('SciPy 2012', 'iwVvqwLDsJo'),
                               ('PyCon 2012', '2G5YTlheCbw'),
                               ('SciPy 2013', 'j9YpkSX7NNM')]
                                                    )
                                 )
             
             # We create a callback function that displays the 
             # requested Youtube video.
             def on_value_change(name, val):
                 clear_output()
                 display(YouTubeVideo(val))
             
             # Every time the user selects an item, the 
             # function `on_value_change` is called, and the 
             # `val` argument contains the value of the selected 
             # item.
             dw.on_trait_change(on_value_change, 'value')
             
             # We choose a default value.
             dw.value = dw.values['SciPy 2013']
             
             # Finally, we display the widget.
             display(dw)
    How to do it...

    An interactive widget in the notebook

The interactive features of IPython 2.0 bring a whole new dimension to the notebook, and we can expect many developments in the future.

There's more...

Notebooks are saved as structured text files (JSON format), which makes them easily shareable. Here are the contents of a simple notebook:

{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "print(\"Hello World!\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Hello World!\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}

IPython comes with a special tool, nbconvert, which converts notebooks to other formats such as HTML and PDF (http://ipython.org/ipython-doc/stable/notebook/index.html).

Another online tool, nbviewer, allows us to render a publicly available notebook directly in the browser and is available at http://nbviewer.ipython.org.

We will cover many of these possibilities in the subsequent chapters, notably in Chapter 3, Mastering the Notebook.

Here are a few references about the notebook:

See also

  • The Getting started with data exploratory analysis in IPython recipe
You have been reading a chapter from
IPython Interactive Computing and Visualization Cookbook
Published in: Sep 2014
Publisher:
ISBN-13: 9781783284818
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image