Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Haskell Data Analysis cookbook

You're reading from   Haskell Data Analysis cookbook Explore intuitive data analysis techniques and powerful machine learning methods using over 130 practical recipes

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783286331
Length 334 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nishant Shukla Nishant Shukla
Author Profile Icon Nishant Shukla
Nishant Shukla
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. The Hunt for Data FREE CHAPTER 2. Integrity and Inspection 3. The Science of Words 4. Data Hashing 5. The Dance with Trees 6. Graph Fundamentals 7. Statistics and Analysis 8. Clustering and Classification 9. Parallel and Concurrent Design 10. Real-time Data 11. Visualizing Data 12. Exporting and Presenting Index

Introduction


The first two recipes deal with summarizing a series of data. For example, assume someone asks, "How old is everyone?". A valid response could be to enumerate through the age of each person, but depending on the number of people, this could take minutes if not hours. Instead, we can answer in terms of the average or in terms of the median to summarize all the age values in one simple number.

The next two recipes are about approximating an equation that most closely fits a collection of points. Given two series of coordinates, we can use a linear or quadratic approximation to predict other points.

We can detect relationships between numerical data through covariance matrices and Pearson correlation calculations as demonstrated in the corresponding recipes.

The Numeric.Probability.Distribution library has many useful functions for deeper statistical understanding as demonstrated in the Bayesian network and playing cards recipes.

We will also use Markov chains and n-grams for further...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime