Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Reinforcement Learning for Games

You're reading from   Hands-On Reinforcement Learning for Games Implementing self-learning agents in games using artificial intelligence techniques

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781839214936
Length 432 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Micheal Lanham Micheal Lanham
Author Profile Icon Micheal Lanham
Micheal Lanham
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Exploring the Environment
2. Understanding Rewards-Based Learning FREE CHAPTER 3. Dynamic Programming and the Bellman Equation 4. Monte Carlo Methods 5. Temporal Difference Learning 6. Exploring SARSA 7. Section 2: Exploiting the Knowledge
8. Going Deep with DQN 9. Going Deeper with DDQN 10. Policy Gradient Methods 11. Optimizing for Continuous Control 12. All about Rainbow DQN 13. Exploiting ML-Agents 14. DRL Frameworks 15. Section 3: Reward Yourself
16. 3D Worlds 17. From DRL to AGI 18. Other Books You May Enjoy

Applying TDL to Q-learning

Q-learning is considered one of the most popular and often used foundational RL methods . The method itself was developed by Chris Watkins in 1989 as part of his thesis, Learning from Delayed Rewards. Q-learning or rather Deep Q-learning, which we will cover in Chapter 6, Going Deep with DQN, became so popular because of its use by DeepMind (Google) to play classic Atari games better than a human. What Watkins did was show how an update could be applied across state-action pairs using a learning rate and discount factor gamma.

This improved the update equation into a Q or quality of state-action update equation, as shown in the following formula:

In the previous equation, we have the following:

  • The current state-action quality being updated
  • The learning rate
  • The reward for the next state
  • Gamma, the discount factor
  • Take the max best or greedy action...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime