Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Neuroevolution with Python

You're reading from   Hands-On Neuroevolution with Python Build high-performing artificial neural network architectures using neuroevolution-based algorithms

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781838824914
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Iaroslav Omelianenko Iaroslav Omelianenko
Author Profile Icon Iaroslav Omelianenko
Iaroslav Omelianenko
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Fundamentals of Evolutionary Computation Algorithms and Neuroevolution Methods FREE CHAPTER
2. Overview of Neuroevolution Methods 3. Python Libraries and Environment Setup 4. Section 2: Applying Neuroevolution Methods to Solve Classic Computer Science Problems
5. Using NEAT for XOR Solver Optimization 6. Pole-Balancing Experiments 7. Autonomous Maze Navigation 8. Novelty Search Optimization Method 9. Section 3: Advanced Neuroevolution Methods
10. Hypercube-Based NEAT for Visual Discrimination 11. ES-HyperNEAT and the Retina Problem 12. Co-Evolution and the SAFE Method 13. Deep Neuroevolution 14. Section 4: Discussion and Concluding Remarks
15. Best Practices, Tips, and Tricks 16. Concluding Remarks 17. Other Books You May Enjoy

Hypercube-Based NEAT for Visual Discrimination

In this chapter, you will learn about the main concepts behind a hypercube-based NEAT algorithm and about the main challenges it was designed to solve. We take a look at the problems that arise when attempting to use direct genome encoding with large-scale artificial neural networks (ANN) and how they can be solved with the introduction of an indirect genome encoding scheme. You will learn how a Compositional Pattern Producing Network (CPPN) can be used to store genome encoding information with an extra-high compression rate and how CPPNs are employed by the HyperNEAT algorithm. Finally, you will work with practical examples that demonstrate the power of the HyperNEAT algorithm.

In this chapter, we discuss the following topics:

  • The problem with the direct encoding of large-scale natural networks using NEAT, and how HyperNEAT can...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime