Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with Python

You're reading from   Hands-On Ensemble Learning with Python Build highly optimized ensemble machine learning models using scikit-learn and Keras

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher Packt
ISBN-13 9781789612851
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Konstantinos G. Margaritis Konstantinos G. Margaritis
Author Profile Icon Konstantinos G. Margaritis
Konstantinos G. Margaritis
George Kyriakides George Kyriakides
Author Profile Icon George Kyriakides
George Kyriakides
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Introduction and Required Software Tools
2. A Machine Learning Refresher FREE CHAPTER 3. Getting Started with Ensemble Learning 4. Section 2: Non-Generative Methods
5. Voting 6. Stacking 7. Section 3: Generative Methods
8. Bagging 9. Boosting 10. Random Forests 11. Section 4: Clustering
12. Clustering 13. Section 5: Real World Applications
14. Classifying Fraudulent Transactions 15. Predicting Bitcoin Prices 16. Evaluating Sentiment on Twitter 17. Recommending Movies with Keras 18. Clustering World Happiness 19. Another Book You May Enjoy

Learning from data

Data is the raw ingredient of machine learning. Processing data can produce information; for example, measuring the height of a portion of a school's students (data) and calculating their average (processing) can give us an idea of the whole school's height (information). If we process the data further, for example, by grouping males and females and calculating two averages – one for each group, we will gain more information, as we will have an idea about the average height of the school's males and females. Machine learning strives to produce the most information possible from any given data. In this example, we produced a very basic predictive model. By calculating the two averages, we can predict the average height of any student just by knowing whether the student is male or female.

The set of data that a machine learning algorithm...

You have been reading a chapter from
Hands-On Ensemble Learning with Python
Published in: Jul 2019
Publisher: Packt
ISBN-13: 9781789612851
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime