An overview of machine learning models
Machine learning is a subfield of artificial intelligence that explores how machines can learn from data to analyze structures, help with decisions, and make predictions. In 1959, Arthur Samuel defined machine learning as the, "Field of study that gives computers the ability to learn without being explicitly programmed."
A wide range of applications employ machine learning methods, such as spam filtering, optical character recognition, computer vision, speech recognition, credit approval, search engines, and recommendation systems.
One important driver for machine learning is the fact that data is generated at an increasing pace across all sectors; be it web traffic, texts or images, and sensor data or scientific datasets. The larger amounts of data give rise to many new challenges in storage and processing systems. On the other hand, many learning algorithms will yield better results with more data to learn from. The field has received a lot of attention...