Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative AI for Cloud Solutions

You're reading from   Generative AI for Cloud Solutions Architect modern AI LLMs in secure, scalable, and ethical cloud environments

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781835084786
Length 300 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Paul Singh Paul Singh
Author Profile Icon Paul Singh
Paul Singh
Anurag Karuparti Anurag Karuparti
Author Profile Icon Anurag Karuparti
Anurag Karuparti
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1:Integrating Cloud Power with Language Breakthroughs FREE CHAPTER
2. Chapter 1: Cloud Computing Meets Generative AI: Bridging Infinite Impossibilities 3. Chapter 2: NLP Evolution and Transformers: Exploring NLPs and LLMs 4. Part 2: Techniques for Tailoring LLMs
5. Chapter 3: Fine-Tuning – Building Domain-Specific LLM Applications 6. Chapter 4: RAGs to Riches: Elevating AI with External Data 7. Chapter 5: Effective Prompt Engineering Techniques: Unlocking Wisdom Through AI 8. Part 3: Developing, Operationalizing, and Scaling Generative AI Applications
9. Chapter 6: Developing and Operationalizing LLM-based Apps: Exploring Dev Frameworks and LLMOps 10. Chapter 7: Deploying ChatGPT in the Cloud: Architecture Design and Scaling Strategies 11. Part 4: Building Safe and Secure AI – Security and Ethical Considerations
12. Chapter 8: Security and Privacy Considerations for Gen AI – Building Safe and Secure LLMs 13. Chapter 9: Responsible Development of AI Solutions: Building with Integrity and Care 14. Part 5: Generative AI – What’s Next?
15. Chapter 10: The Future of Generative AI – Trends and Emerging Use Cases 16. Index 17. Other Books You May Enjoy

Real-life examples of fine-tuning success

In this section, we’ll explore a real-life example of a fine-tuning approach that OpenAI implemented, which yielded remarkable outcomes.

InstructGPT

OpenAI’s InstructGPT is one of the most successful stories of fine-tuned models that laid the foundation of ChatGPT. ChatGPT is said to be a sibling model to InstructGPT. The methods that are used to fine-tune ChatGPT are similar to InstructGPT. InstructGPT was created by fine-tuning pre-trained GPT-3 models with RHLF. Supervised fine-tuning is the first step in RLHF for generating responses aligned to human preferences.

In the beginning, GPT-3 models weren’t originally designed to adhere to user instructions. Their training focused on predicting the next word based on vast amounts of internet text data. Therefore, these models underwent fine-tuning using instructional datasets along with RLHF to enhance their ability to generate more useful and relevant responses...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image