Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Developing Kaggle Notebooks

You're reading from   Developing Kaggle Notebooks Pave your way to becoming a Kaggle Notebooks Grandmaster

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781805128519
Length 370 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Gabriel Preda Gabriel Preda
Author Profile Icon Gabriel Preda
Gabriel Preda
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introducing Kaggle and Its Basic Functions FREE CHAPTER 2. Getting Ready for Your Kaggle Environment 3. Starting Our Travel – Surviving the Titanic Disaster 4. Take a Break and Have a Beer or Coffee in London 5. Get Back to Work and Optimize Microloans for Developing Countries 6. Can You Predict Bee Subspecies? 7. Text Analysis Is All You Need 8. Analyzing Acoustic Signals to Predict the Next Simulated Earthquake 9. Can You Find Out Which Movie Is a Deepfake? 10. Unleash the Power of Generative AI with Kaggle Models 11. Closing Our Journey: How to Stay Relevant and on Top 12. Other Books You May Enjoy
13. Index

Introducing the LANL Earthquake Prediction competition

The LANL Earthquake Prediction competition centers on utilizing seismic signals to determine the precise timing of a laboratory-induced earthquake. Currently, predicting natural earthquakes remains beyond the reach of our scientific knowledge and technological capabilities. The ideal scenario for scientists is to predict the timing, location, and magnitude of such an event.

Simulated earthquakes, however, created in highly controlled artificial environments, mimic real-world seismic activities. These simulations enable attempts to forecast lab-generated quakes using the same types of signals observed in natural settings. In this competition, participants use an acoustic data input signal to estimate the time until the next artificial earthquake occurs, as detailed in Reference 3. The challenge is to predict the timing of the earthquake, addressing one of the three critical unknowns in earthquake forecasting: when it will happen...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime