Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781838826994
Length 826 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (28) Chapters Close

Preface 1. What Is Reinforcement Learning? 2. OpenAI Gym FREE CHAPTER 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. Higher-Level RL Libraries 8. DQN Extensions 9. Ways to Speed up RL 10. Stocks Trading Using RL 11. Policy Gradients – an Alternative 12. The Actor-Critic Method 13. Asynchronous Advantage Actor-Critic 14. Training Chatbots with RL 15. The TextWorld Environment 16. Web Navigation 17. Continuous Action Space 18. RL in Robotics 19. Trust Regions – PPO, TRPO, ACKTR, and SAC 20. Black-Box Optimization in RL 21. Advanced Exploration 22. Beyond Model-Free – Imagination 23. AlphaGo Zero 24. RL in Discrete Optimization 25. Multi-agent RL 26. Other Books You May Enjoy
27. Index

To get the most out of this book

All the chapters in this book describing RL methods have the same structure: in the beginning, we discuss the motivation of the method, its theoretical foundation, and the idea behind it. Then, we follow several examples of the method applied to different environments with the full source code.

You can use the book in different ways:

  1. To quickly become familiar with some method, you can read only the introductory part of the relevant chapter
  2. To get a deeper understanding of the way the method is implemented, you can read the code and the comments around it
  3. To gain a deep familiarity with the method (the best way to learn, I believe) you can try to reimplement the method and make it work, using the provided source code as a reference point

In any case, I hope the book will be useful for you!

Download the example code files

You can download the example code files for this book from your account at www.packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

  1. Log in or register at http://www.packt.com.
  2. Select the Support tab.
  3. Click on Code Downloads.
  4. Enter the name of the book in the Search box and follow the on-screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR / 7-Zip for Windows
  • Zipeg / iZip / UnRarX for Mac
  • 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition. In case there’s an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781838826994_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example; “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

def grads_func(proc_name, net, device, train_queue):
    envs = [make_env() for _ in range(NUM_ENVS)]
    agent = ptan.agent.PolicyAgent(
        lambda x: net(x)[0], device=device, apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        envs, agent, gamma=GAMMA, steps_count=REWARD_STEPS)
    batch = []
    frame_idx = 0
    writer = SummaryWriter(comment=proc_name)

Any command-line input or output is written as follows:

rl_book_samples/Chapter11$ ./02_a3c_grad.py --cuda -n final

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example: “Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image