Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science Algorithms in a Week

You're reading from   Data Science Algorithms in a Week Top 7 algorithms for scientific computing, data analysis, and machine learning

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781789806076
Length 214 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
David Toth David Toth
Author Profile Icon David Toth
David Toth
David Natingga David Natingga
Author Profile Icon David Natingga
David Natingga
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Classification Using K-Nearest Neighbors FREE CHAPTER 2. Naive Bayes 3. Decision Trees 4. Random Forests 5. Clustering into K Clusters 6. Regression 7. Time Series Analysis 8. Python Reference 9. Statistics 10. Glossary of Algorithms and Methods in Data Science
11. Other Books You May Enjoy

Swim preference – analysis involving a random forest


We will use the example from Chapter 3Decision Trees concerning swim preferences. We have the same data table, as follows:

Swimming suit

Water temperature

Swim preference

None

Cold

No

None

Warm

No

Small

Cold

No

Small

Warm

No

Good

Cold

No

Good

Warm

Yes

 

We would like to construct a random forest from this data and use it to classify an item (Good,Cold,?).

Analysis

We are given M=3 variables, according to which a feature can be classified. In a random forest algorithm, we usually do not use all three variables to form tree branches at each node. We only use a subset (m) of variables from M. So we choose m such that m is less than, or equal to, M. The greater m is, the stronger the classifier is in each constructed tree. However, as mentioned earlier, more data leads to more bias. But, because we use multiple trees (with a lower m), even if each constructed tree is a weak classifier, their combined classification accuracy is strong. As we want to reduce bias in...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image