Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
C Programming for Arduino

You're reading from   C Programming for Arduino Building your own electronic devices is fascinating fun and this book helps you enter the world of autonomous but connected devices. After an introduction to the Arduino board, you'll end up learning some skills to surprise yourself.

Arrow left icon
Product type Paperback
Published in May 2013
Publisher Packt
ISBN-13 9781849517584
Length 512 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Julien Bayle Julien Bayle
Author Profile Icon Julien Bayle
Julien Bayle
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

C Programming for Arduino
Credits
About the Author
Acknowledgement
About the Reviewers
www.PacktPub.com
Preface
Let's Plug Things FREE CHAPTER First Contact with C C Basics – Making You Stronger Improve Programming with Functions, Math, and Timing Sensing with Digital Inputs Sensing the World – Feeling with Analog Inputs Talking over Serial Designing Visual Output Feedback Making Things Move and Creating Sounds Some Advanced Techniques Networking Playing with Max 6 Framework Improving your C Programming and Creating Libraries Index

static, volatile, and const qualifiers


Qualifiers are the keywords that are used to change the processor's behavior considering the qualified variable. In reality, the compiler will use these qualifiers to change characteristics of the considered variables in the binary firmware produced. We are going to learn about three qualifiers: static, volatile, and const.

static

When you use the static qualifier for a variable inside a function, this makes the variable persistent between two calls of the function. Declaring a variable inside a function makes the variable, implicitly, local to the function as we just learned. It means only the function can know and use the variable. For instance:

int myGlobalVariable;

void setup(){
}

void loop(){
  myFunction(digitalPinValue);
}

void myFunction(argument){
int aLocalVariable;
aLocalVariable = aLocalVariable + argument;
  // playing with aLocalVariable
}

This variable is seen in the myFunction function only. But what happens after the first loop? The...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image