Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analytics with Java

You're reading from   Big Data Analytics with Java Data analysis, visualization & machine learning techniques

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787288980
Length 418 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
RAJAT MEHTA RAJAT MEHTA
Author Profile Icon RAJAT MEHTA
RAJAT MEHTA
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Big Data Analytics with Java FREE CHAPTER 2. First Steps in Data Analysis 3. Data Visualization 4. Basics of Machine Learning 5. Regression on Big Data 6. Naive Bayes and Sentiment Analysis 7. Decision Trees 8. Ensembling on Big Data 9. Recommendation Systems 10. Clustering and Customer Segmentation on Big Data 11. Massive Graphs on Big Data 12. Real-Time Analytics on Big Data 13. Deep Learning Using Big Data Index

Ensembling


Imagine that a group of friends are deciding which movie they want to see together. For this, they select their movie of choice from a set of, say, five or six movies. At the end, all their votes are collected and read. The movie with the maximum votes is picked and watched. What just happened is a real-life example of the ensembling approach. Basically, multiple entities act on a problem and give their selection out of a collection of discrete choices (in the case of a classification problem). The selection that was suggested by the maximum number of entities is chosen as the predicted choice.

This explanation was a general approach to ensembling. From the perspective of machine learning, it just means that multiple machine learning programs act on a problem that can be either of type classification or regression. The output from each machine learning algorithm is collected. The results from all the algorithms are then analyzed with different approaches like voting, averaging...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image