Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Automated Machine Learning on AWS

You're reading from   Automated Machine Learning on AWS Fast-track the development of your production-ready machine learning applications the AWS way

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801811828
Length 420 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Trenton Potgieter Trenton Potgieter
Author Profile Icon Trenton Potgieter
Trenton Potgieter
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Fundamentals of the Automated Machine Learning Process and AutoML on AWS
2. Chapter 1: Getting Started with Automated Machine Learning on AWS FREE CHAPTER 3. Chapter 2: Automating Machine Learning Model Development Using SageMaker Autopilot 4. Chapter 3: Automating Complicated Model Development with AutoGluon 5. Section 2: Automating the Machine Learning Process with Continuous Integration and Continuous Delivery (CI/CD)
6. Chapter 4: Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning 7. Chapter 5: Continuous Deployment of a Production ML Model 8. Section 3: Optimizing a Source Code-Centric Approach to Automated Machine Learning
9. Chapter 6: Automating the Machine Learning Process Using AWS Step Functions 10. Chapter 7: Building the ML Workflow Using AWS Step Functions 11. Section 4: Optimizing a Data-Centric Approach to Automated Machine Learning
12. Chapter 8: Automating the Machine Learning Process Using Apache Airflow 13. Chapter 9: Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow 14. Section 5: Automating the End-to-End Production Application on AWS
15. Chapter 10: An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC) 16. Chapter 11: Continuous Integration, Deployment, and Training for the MLSDLC 17. Other Books You May Enjoy

Complexities in the ML process

Each iteration through the process is an experiment to see whether the changes that were made in a previous part of the process will yield a better result or a more optimized ML model. It is this process of iteration that makes the ML workflow hard and difficult to automate. The goal of each iteration or experiment is to improve the model's overall predictive capabilities. During each iteration, we fine-tune the parameters, discover new variables, and verify that these changes improve the overall accuracy of the model's prediction. Each experiment also provides further insight into where we are in the overall process and what the next steps might be. In essence, having to potentially go back and tweak a previous step or even go back to the very beginning of the process and start with a different set of data, parameters, or even a different ML model altogether is a manual process. But even unsuccessful experiments have value since they allow us to learn from our mistakes and hopefully steer us toward a successful outcome.

Note

Tolerating failures and not letting them derail the overall ML process is a key factor in any successful ML strategy.

So, if the overall process is complicated and executing the methodology yields failures, this will hopefully lead to a more successful outcome that will impact the overall ML strategy. It becomes noticeably clear why automating the entire process is challenging but necessary, as it now becomes a crucial part of the overall success criteria of any ML project.

Now that we have a good idea of what makes the ML process difficult, let's explore these challenges further by covering a practical example.

You have been reading a chapter from
Automated Machine Learning on AWS
Published in: Apr 2022
Publisher: Packt
ISBN-13: 9781801811828
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime