Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Vision and Language Processing for Robotics

You're reading from   Artificial Vision and Language Processing for Robotics Create end-to-end systems that can power robots with artificial vision and deep learning techniques

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781838552268
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Gonzalo Molina Gallego Gonzalo Molina Gallego
Author Profile Icon Gonzalo Molina Gallego
Gonzalo Molina Gallego
Unai Garay Maestre Unai Garay Maestre
Author Profile Icon Unai Garay Maestre
Unai Garay Maestre
Álvaro Morena Alberola Álvaro Morena Alberola
Author Profile Icon Álvaro Morena Alberola
Álvaro Morena Alberola
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Artificial Vision and Language Processing for Robotics
Preface
1. Fundamentals of Robotics 2. Introduction to Computer Vision FREE CHAPTER 3. Fundamentals of Natural Language Processing 4. Neural Networks with NLP 5. Convolutional Neural Networks for Computer Vision 6. Robot Operating System (ROS) 7. Build a Text-Based Dialogue System (Chatbot) 8. Object Recognition to Guide a Robot Using CNNs 9. Computer Vision for Robotics Appendix

Chapter 5: Convolutional Neural Networks for Computer Vision


Activity 5: Making Use of Data Augmentation to Classify correctly Images of Flowers

Solution

  1. Open your Google Colab interface.

    Note

    You will need to mount your drive using the Dataset folder, and accordingly set the path to continue ahead.

    import numpyasnp
    classes=['daisy','dandelion','rose','sunflower','tulip']
    X=np.load("Dataset/flowers/%s_x.npy"%(classes[0]))
    y=np.load("Dataset/flowers/%s_y.npy"%(classes[0]))
    print(X.shape)
    forflowerinclasses[1:]:
        X_aux=np.load("Dataset/flowers/%s_x.npy"%(flower))
        y_aux=np.load("Dataset/flowers/%s_y.npy"%(flower))
        print(X_aux.shape)
        X=np.concatenate((X,X_aux),axis=0)
        y=np.concatenate((y,y_aux),axis=0)
        
    print(X.shape)
    print(y.shape)
  2. To output some samples from the dataset:

    import random 
    random.seed(42) 
    from matplotlib import pyplot as plt
    import cv2
    
    for idx in range(5): 
        rnd_index = random.randint(0, 4000) 
        plt.subplot(1,5,idx+1),plt.imshow(cv2.cvtColor(X[rnd_index],cv2.COLOR_BGR2RGB)) 
        plt.xticks([]),plt.yticks([])
        plt.savefig("flowers_samples.jpg", bbox_inches='tight')
    plt.show() 

    The output is as follows:

    Figure 5.23: Samples from the dataset

  3. Now, we will normalize and perform one-hot encoding:

    from keras import utils as np_utils
    X = (X.astype(np.float32))/255.0 
    y = np_utils.to_categorical(y, len(classes))
    print(X.shape)
    print(y.shape)
  4. Splitting the training and testing set:

    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    input_shape = x_train.shape[1:]
    print(x_train.shape)
    print(y_train.shape)
    print(x_test.shape)
    print(y_test.shape)
    print(input_shape)
  5. Import libraries and build the CNN:

    from keras.models import Sequential
    from keras.callbacks import ModelCheckpoint
    from keras.layers import Input, Dense, Dropout, Flatten
    from keras.layers import Conv2D, Activation, BatchNormalization
    def CNN(input_shape):
        model = Sequential()
        
        model.add(Conv2D(32, kernel_size=(5, 5), padding='same',  strides=(2,2), input_shape=input_shape))
        model.add(Activation('relu')) 
        model.add(BatchNormalization()) 
        model.add(Dropout(0.2))
    
        model.add(Conv2D(64, kernel_size=(3, 3), padding='same', strides=(2,2))) 
        model.add(Activation('relu')) 
        model.add(BatchNormalization()) 
        model.add(Dropout(0.2))
    
        model.add(Conv2D(128, kernel_size=(3, 3), padding='same', strides=(2,2))) 
        model.add(Activation('relu')) 
        model.add(BatchNormalization()) 
        model.add(Dropout(0.2))
        
        model.add(Conv2D(256, kernel_size=(3, 3), padding='same', strides=(2,2))) 
        model.add(Activation('relu')) 
        model.add(BatchNormalization()) 
        model.add(Dropout(0.2))
        
        model.add(Flatten())
        model.add(Dense(512))
        model.add(Activation('relu'))
        model.add(BatchNormalization())
        model.add(Dropout(0.5))
        model.add(Dense(5, activation = "softmax"))
    
        return model
  6. Declare ImageDataGenerator:

    from keras.preprocessing.image import ImageDataGenerator
    datagen = ImageDataGenerator(
            rotation_range=10,
            zoom_range = 0.2,
            width_shift_range=0.2,
            height_shift_range=0.2,
            shear_range=0.1,
            horizontal_flip=True
            )
  7. We will now train the model:

    datagen.fit(x_train)
    
    model = CNN(input_shape)
    
    model.compile(loss='categorical_crossentropy', optimizer='Adadelta', metrics=['accuracy'])
    
    ckpt = ModelCheckpoint('Models/model_flowers.h5', save_best_only=True,monitor='val_loss', mode='min', save_weights_only=False) 
    
    //{…}##the detailed code can be found on Github##
    
    model.fit_generator(datagen.flow(x_train, y_train,
                                batch_size=32),
                        epochs=200,
                        validation_data=(x_test, y_test),
                        callbacks=[ckpt],
                        steps_per_epoch=len(x_train) // 32,
                        workers=4)
  8. After which, we will evaluate the model:

    from sklearn import metrics
    model.load_weights('Models/model_flowers.h5')
    y_pred = model.predict(x_test, batch_size=32, verbose=0)
    y_pred = np.argmax(y_pred, axis=1)
    y_test_aux = y_test.copy()
    y_test_pred = list()
    for i in y_test_aux:
        y_test_pred.append(np.argmax(i))
    
    //{…}
    ##the detailed code can be found on Github##
    
    print (y_pred)
    
    # Evaluate the prediction
    accuracy = metrics.accuracy_score(y_test_pred, y_pred)
    print('Acc: %.4f' % accuracy)
  9. The accuracy achieved is 91.68%.

  10. Try the model with unseen data:

    classes = ['daisy','dandelion','rose','sunflower','tulip']
    images = ['sunflower.jpg','daisy.jpg','rose.jpg','dandelion.jpg','tulip .jpg']
    model.load_weights('Models/model_flowers.h5')
    
    for number in range(len(images)):
        imgLoaded = cv2.imread('Dataset/testing/%s'%(images[number])) 
        img = cv2.resize(imgLoaded, (150, 150)) 
        img = (img.astype(np.float32))/255.0 
        img = img.reshape(1, 150, 150, 3)
        plt.subplot(1,5,number+1),plt.imshow(cv2.cvtColor(imgLoaded,cv2.COLOR_BGR2RGB)) 
        plt.title(np.argmax(model.predict(img)[0])) 
        plt.xticks([]),plt.yticks([]) 
    plt.show()

    Output will look like this:

    Figure 5.24: Prediction of roses result from Activity05

    Note

    The detailed code for this activity can be found on GitHub - https://github.com/PacktPublishing/Artificial-Vision-and-Language-Processing-for-Robotics/blob/master/Lesson05/Activity05/Activity05.ipynb

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime