Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

Tech Guides

852 Articles
article-image-create-strong-data-science-project-portfolio-lands-job
Aaron Lazar
13 Feb 2018
8 min read
Save for later

How to create a strong data science project portfolio that lands you a job

Aaron Lazar
13 Feb 2018
8 min read
Okay, you’re probably here because you’ve got just a few months to graduate and the projects section of your resume is blank. Or you’re just an inquisitive little nerd scraping the WWW for ways to crack that dream job. Either way, you’re not alone and there are ten thousand others trying to build a great Data Science portfolio to land them a good job. Look no further, we’ll try our best to help you on how to make a portfolio that catches the recruiter’s eye! David “Trent” Salazar‘s portfolio is a great example of a wholesome one and Sajal Sharma’s, is a good example of how one can display their Data Science Portfolios on a platform like Github. Companies are on the lookout for employees who can add value to the business. To showcase this on your resume effectively, the first step is to understand the different ways in which you can add value. 4 things you need to show in a data science portfolio Data science can be broken down into 4 broad areas: Obtaining insights from data and presenting them to the business leaders Designing an application that directly benefits the customer Designing an application or system that directly benefits other teams in the organisation Sharing expertise on data science with other teams You’ll need to ensure that your portfolio portrays all or at least most of the above, in order to easily make it through a job selection. So let’s see what we can do to make a great portfolio. Demonstrate that you know what you're doing So the idea is to show the recruiter that you’re capable of performing the critical aspects of Data Science, i.e. import a data set, clean the data, extract useful information from the data using various techniques, and finally visualise the findings and communicate them. Apart from the technical skills, there are a few soft skills that are expected as well. For instance, the ability to communicate and collaborate with others, the ability to reason and take the initiative when required. If your project is actually able to communicate these things, you’re in! Stay focused and be specific You might know a lot, but rather than throwing all your skills, projects and knowledge in the employer’s face, it’s always better to be focused on doing something and doing it right. Just as you’d do in your resume, keeping things short and sweet, you can implement this while building your portfolio too. Always remember, the interviewer is looking for specific skills. Research the data science job market Find 5-6 jobs, probably from Linkedin or Indeed, that interest you and go through their descriptions thoroughly. Understand what kind of skills the employer is looking for. For example, it could be classification, machine learning, statistical modeling or regression. Pick up the tools that are required for the job - for example, Python, R, TensorFlow, Hadoop, or whatever might get the job done. If you don’t know how to use that tool, you’ll want to skill-up as you work your way through the projects. Also, identify the kind of data that they would like you to be working on, like text or numerical, etc. Now, once you have this information at hand, start building your project around these skills and tools. Be a problem solver Working on projects that are not actual ‘problems’ that you’re solving, won’t stand out in your portfolio. The closer your projects are to the real-world, the easier it will be for the recruiter to make their decision to choose you. This will also showcase your analytical skills and how you’ve applied data science to solve a prevailing problem. Put at least 3 diverse projects in your data science portfolio A nice way to create a portfolio is to list 3 good projects that are diverse in nature. Here are some interesting projects to get you started on your portfolio: Data Cleaning and wrangling Data Cleaning is one of the most critical tasks that a data scientist performs. By taking a group of diverse data sets, consolidating and making sense of them, you’re giving the recruiter confidence that you know how to prep them for analysis. For example, you can take Twitter or Whatsapp data and clean it for analysis. The process is pretty simple; you first find a “dirty” data set, then spot an interesting angle to approach the data from, clean it up and perform analysis on it, and finally present your findings. Data storytelling Storytelling showcases not only your ability to draw insight from raw data, but it also reveals how well you’re able to convey the insights to others and persuade them. For example, you can use data from the bus system in your country and gather insights to identify which stops incur the most delays. This could be fixed by changing their route. Make sure your analysis is descriptive and your code and logic can be followed. Here’s what you do; first you find a good dataset, then you explore the data and spot correlations in the data. Then you visualize it before you start writing up your narrative. Tackle the data from various angles and pick up the most interesting one. If it’s interesting to you, it will most probably be interesting to anyone else who’s reviewing it. Break down and explain each step in detail, each code snippet, as if you were describing it to a friend. The idea is to teach the reviewer something new as you run through the analysis. End to end data science If you’re more into Machine Learning, or algorithm writing, you should do an end-to-end data science project. The project should be capable of taking in data, processing it and finally learning from it, every step of the way. For example, you can pick up fuel pricing data for your city or maybe stock market data. The data needs to be dynamic and updated regularly. The trick for this one is to keep the code simple so that it’s easy to set up and run. You first need to identify a good topic. Understand here that we will not be working with a single dataset, rather you will need to import and parse all the data and bring it under a single dataset yourself. Next, get the training and test data ready to make predictions. Document your code and other findings and you’re good to go. Prove you have the data science skill set If you want to get that job, you’ve got to have the appropriate tools to get the job done. Here’s a list of some of the most popular tools with a link to the right material for you to skill-up: Data science languages There's a number of key languages in data science that are essential. It might seem obvious, but making sure they're on your resume and demonstrated in your portfolio is incredibly important. Include things like: Python R Java Scala SQL Big Data tools If you're applying for big data roles, demonstrating your experience with the key technologies is a must. It not only proves you have the skills, but also shows that you have an awareness of what tools can be used to build a big data solution or project. You'll need: Hadoop, Spark Hive Machine learning frameworks With machine learning so in demand, if you can prove you've used a number of machine learning frameworks, you've already done a lot to impress. Remember, many organizations won't actually know as much about machine learning as you think. In fact, they might even be hiring you with a view to building out this capability. Remember to include: TensorFlow Caffe2 Keras PyTorch Data visualisation tools Data visualization is a crucial component of any data science project. If you can visualize and communicate data effectively, you're immediately demonstrating you're able to collaborate with others and make your insights accessible and useful to the wider business. Include tools like these in your resume and portfolio:  D3.js Excel chart  Tableau  ggplot2 So there you have it. You know what to do to build a decent data science portfolio. It’s really worth attending competitions and challenges. It will not only help you keep up to data and well oiled with your skills, but also give you a broader picture of what people are actually working on and with what tools they’re able to solve problems.
Read more
  • 0
  • 2
  • 12639

article-image-what-is-the-history-behind-c-programming-and-unix
Packt Editorial Staff
17 Oct 2019
9 min read
Save for later

What is the history behind C Programming and Unix?

Packt Editorial Staff
17 Oct 2019
9 min read
If you think C programming and Unix are unrelated, then you are making a big mistake. Back in the 1970s and 1980s, if the Unix engineers at Bell Labs had decided to use another programming language instead of C to develop a new version of Unix, then we would be talking about that language today. The relationship between the two is simple; Unix is the first operating system that is implemented with a high-level C programming language, got its fame and power from Unix. Of course, our statement about C being a high-level programming language is not true in today’s world. This article is an excerpt from the book Extreme C by Kamran Amini. Kamran teaches you to use C’s power. Apply object-oriented design principles to your procedural C code. You will gain new insight into algorithm design, functions, and structures. You’ll also understand how C works with UNIX, how to implement OO principles in C, and what multiprocessing is. In this article, we are going to look at the history of C programming and Unix. Multics OS and Unix Even before having Unix, we had the Multics OS. It was a joint project launched in 1964 as a cooperative project led by MIT, General Electric, and Bell Labs. Multics OS was a huge success because it could introduce the world to a real working and secure operating system. Multics was installed everywhere from universities to government sites. Fast-forward to 2019, and every operating system today is borrowing some ideas from Multics indirectly through Unix. In 1969, because of the various reasons that we will talk about shortly, some people at Bell Labs, especially the pioneers of Unix, such as Ken Thompson and Dennis Ritchie, gave up on Multics and, subsequently, Bell Labs quit the Multics project. But this was not the end for Bell Labs; they had designed their simpler and more efficient operating system, which was called Unix. It is worthwhile to compare the Multics and Unix operating systems. In the following list, you will see similarities and differences found while comparing Multics and Unix: Both follow the onion architecture as their internal structure. We mean that they both have the same rings in their onion architecture, especially kernel and shell rings. Therefore, programmers could write their own programs on top of the shell ring. Also, Unix and Multics expose a list of utility programs, and there are lots of utility programs such as ls and pwd. In the following sections, we will explain the various rings found in the Unix architecture. Multics needed expensive resources and machines to be able to work. It was not possible to install it on ordinary commodity machines, and that was one of the main drawbacks that let Unix thrive and finally made Multics obsolete after about 30 years. Multics was complex by design. This was the reason behind the frustration of Bell Labs employees and, as we said earlier, the reason why they left the project. But Unix tried to remain simple. In the first version, it was not even multitasking or multi-user! You can read more about Unix and Multics online, and follow the events that happened in that era. Both were successful projects, but Unix has been able to thrive and survive to this day. It is worth sharing that Bell Labs has been working on a new distributed operating system called Plan 9, which is based on the Unix project.   Figure 1-1: Plan 9 from Bell Labs Suffice to say that Unix was a simplification of the ideas and innovations that Multics presented; it was not something new, and so, I can quit talking about Unix and Multics history at this point. So far, there are no traces of C in the history because it has not been invented yet. The first versions of Unix were purely written using assembly language. Only in 1973 was Unix version 4 written using C. Now, we are getting close to discussing C itself, but before that, we must talk about BCPL and B because they have been the gateway to C. About BCPL and B BCPL was created by Martin Richards as a programming language invented for the purpose of writing compilers. The people from Bell Labs were introduced to the language when they were working as part of the Multics project. After quitting the Multics project, Bell Labs first started to write Unix using assembly programming language. That’s because, back then, it was an anti-pattern to develop an operating system using a programming language other than assembly. For instance, it was strange that the people at the Multics project were using PL/1 to develop Multics but, by doing that, they showed that operating systems could be successfully written using a higher-level programming language other than assembly. As a result, Multics became the main inspiration for using another language for developing Unix. The attempt to write operating system modules using a programming language other than assembly remained with Ken Thompson and Dennis Ritchie at Bell Labs. They tried to use BCPL, but it turned out that they needed to apply some modifications to the language to be able to use it in minicomputers such as the DEC PDP-7. These changes led to the B programming language. While we won’t go too deep into the properties of the B language here you can read more about it and the way it was developed at the following links: The B Programming Language  The Development of the C Language Dennis Ritchie authored the latter article himself, and it is a good way to explain the development of the C programming language while still sharing valuable information about B and its characteristics. B also had its shortcomings in terms of being a system programming language. B was typeless, which meant that it was only possible to work with a word (not a byte) in each operation. This made it hard to use the language on machines with a different word length. Therefore, over time, further modifications were made to the language until it led to developing the NB (New B) language, which later derived the structures from the B language. These structures were typeless in B, but they became typed in C. And finally, in 1973, the fourth version of Unix could be developed using C, which still had many assembly codes. In the next section, we talk about the differences between B and C, and why C is a top-notch modern system programming language for writing an operating system. The way to C programming and Unix I do not think we can find anyone better than Dennis Ritchie himself to explain why C was invented after the difficulties met with B. In this section, we’re going to list the causes that prompted Dennis Ritchie, Ken Thompson, and others create a new programming language instead of using B for writing Unix. Limitations of the B programming language: B could only work with words in memory: Every single operation should have been performed in terms of words. Back then, having a programming language that was able to work with bytes was a dream. This was because of the available hardware at the time, which addressed the memory in a word-based scheme. B was typeless: More accurately, B was a single-type language. All variables were from the same type: word. So, if you had a string with 20 characters (21 plus the null character at the end), you had to divide it up by words and store it in more than one variable. For example, if a word was 4 bytes, you would have 6 variables to store 21 characters of the string. Being typeless meant that multiple byte-oriented algorithms, such as string manipulation algorithms, were not efficiently written with B: This was because B was using the memory words not bytes, and they could not be used efficiently to manage multi-byte data types such as integers and characters. B didn’t support floating-point operations: At the time, these operations were becoming increasingly available on the new hardware, but there was no support for that in the B language. Through the availability of machines such as PDP-1, which could address memory on a byte basis, B showed that it could be inefficient in addressing bytes of memory: This became even clearer with B pointers, which could only address the words in the memory, and not the bytes. In other words, for a program wanting to access a specific byte or a byte range in the memory, more computations had to be done to calculate the corresponding word index. The difficulties with B, particularly its slow development and execution on machines that were available at the time, forced Dennis Ritchie to develop a new language. This new language was called NB, or New B at first, but it eventually turned out to be C. This newly developed language, C, tried to cover the difficulties and flaws of B and became a de facto programming language for system development, instead of the assembly language. In less than 10 years, newer versions of Unix were completely written in C, and all newer operating systems that were based on Unix got tied with C and its crucial presence in the system. As you can see, C was not born as an ordinary programming language, but instead, it was designed by having a complete set of requirements in mind. You may consider languages such as Java, Python, and Ruby to be higher-level languages, but they cannot be considered as direct competitors as they are different and serve different purposes. For instance, you cannot write a device driver or a kernel module with Java or Python, and they themselves have been built on top of a layer written in C. Unlike some programming languages, C is standardized by ISO, and if it is required to have a certain feature in the future, then the standard can be modified to support the new feature. To summarize In this article, we began with the relationship between Unix and C. Even in non-Unix operating systems, you see some traces of a similar design to Unix systems. We also looked at the history of C and explained how Unix appeared from Multics OS and how C was derived from the B programming language. The book Extreme C, written by Kamran Amini will help you make the most of C's low-level control, flexibility, and high performance. Is Dark an AWS Lambda challenger? Microsoft mulls replacing C and C++ code with Rust calling it a “modern safer system programming language” with great memory safety features Is Scala 3.0 a new language altogether? Martin Odersky, its designer, says “yes and no”
Read more
  • 0
  • 0
  • 12627

article-image-what-coding-service
Antonio Cucciniello
02 Oct 2017
4 min read
Save for later

What is coding as a service?

Antonio Cucciniello
02 Oct 2017
4 min read
What is coding as a service? If you want to know what coding as a service is, you have to start with Artificial intelligence. Put simply, coding-as-a-service is using AI to build websites, using your machine to write code so you don't have to. The challenges facing engineers and programmers today In order to give you a solid understanding of what coding as a service is, you must understand where we are today. Typically, we have programs that are made by software developers or engineers. These programs are usually created to automate a task or make tasks easier. Think things that typically speed up processing or automate a repetitive task. This is, and has been, extremely beneficial. The gained productivity from the automated applications and tasks allows us, as humans and workers, to spend more time on creating important things and coming up with more ground breaking ideas. This is where Artificial Intelligence and Machine Learning come into the picture. Artificial intelligence and coding as a service Recently, with the gains in computing power that have come with time and breakthroughs, computers have became more and more powerful, allowing for AI applications to arise in more common practice. At this point today, there are applications that allow for users to detect objects in images and videos in real-time, translate speech to text, and even determine the emotions in the text sent by someone else. For an example of Artificial Intelligence Applications in use today, you may have used an Amazon Alexa or Echo Device. You talk to it, and it can understand your speech, and it will then complete a task based off your speech. Previously, this was a task given to only humans (the ability to understand speech.). Now with advances, Alexa is capable of understanding everything you say,given that it is "trained" to understand it. This development, previously only expected of humans, is now being filtered through to technology. How coding as a service will automate boring tasks Today, we have programmers that write applications for many uses and make things such as websites for businesses. As things progress and become more and more automated, that will increase programmer’s efficiency and will reduce the need for additional manpower. Coding as a service, other wise known as Caas, will result in even fewer programmers needed. It mixes the efficiencies we already have with Artificial Intelligence to do programming tasks for a user. Using Natural Language Processing to understand exactly what the user or customer is saying and means, it will be able to make edits to websites and applications on the fly. Not only will it be able to make edits, but combined with machine learning, the Caas can now come up with recommendations from past data to make edits on its own. Efficiency-wise, it is cheaper to own a computer than it is to pay a human especially when a computer will work around the clock for you and never get tired. Imagine paying an extremely low price (one than you might already pay to get a website made) for getting your website built or maybe your small application created. Conclusion Every new technology comes with pros and cons. Overall, the number of software developers may decrease, or, as a developer, this may free up your time from more menial tasks, and enable you to further specialize and broaden your horizons. Artificial Intelligence programs such as Coding as a Service could be spent doing plenty of the underlying work, and leave some of the heavier loading to human programmers. With every new technology comes its positives and negatives. You just need to use the postives to your advantage!
Read more
  • 0
  • 0
  • 12513

article-image-simple-player-health
Gareth Fouche
22 Dec 2016
8 min read
Save for later

Simple Player Health

Gareth Fouche
22 Dec 2016
8 min read
In this post, we’ll create a simple script to manage player health, then use that script and Unity triggers to create health pickups and environmental danger (lava) in a level. Before we get started on our health scripts, let’s create a prototype 3D environment to test them in. Create a new project with a new scene. Save this as “LavaWorld”. Begin by adding two textures to the project, a tileable rock texture and a tileable lava texture. If you don’t have those assets already, there are many sources of free textures online. Click Here is a good start. Create two new Materials named “LavaMaterial” and “RockMaterial” to match the new textures by right-clicking in the Project pane and selecting Create > Material. Drag the rock texture into the Albedo slot of RockMaterial. Drag the lava texture into the Emission slot of LavaMaterial to create a glowing lava effect. Now our materials are ready to use. In the Hierarchy view, use Create > 3D Object > Cube to create a 3D cube in the scene. Drag RockMaterial into the Materials > Element 0 slot on the Mesh Renderer of your cube in order to change the cube texture from the default blue material to your rock texture. Use the scale controls to stretch and flatten the cube. We now have a simple “rock platform”. Copy and paste the platform a few times, moving the new copies away to form small “islands”. Create a few more copies of the rock platform, scale them so that they’re long and thin, and position them as bridges between the “islands”. For example: Now, create a new cube named “LavaVolume”, and assign it the LavaMaterial. Scale it so that it is large enough to encompass all the islands but shallow (scale the y-axis height down). Move it so that it is lower than the islands, and so they appear to float in a lava field. In order to make it possible that a player can fall into the lava, check the BoxCollider’s “Is Trigger” property on LavaVolume. The Box Collider will now act as a Trigger volume, no longer physically blocking objects that come into contact with it, but notifying the script when an object moves through the collider volume. This presents a problem, as objects will now fall through the lava into infinite space! To deal with this problem, make another copy of the rock platforms and scale/position it so that it’s a similar dimension to the lava, also wide but flat, and position it just below the lava. So it forms a rock “floor” under the lava volume. To make your scene a little nicer, repeat the process to create rock walls around the lava, hiding where the lava volume ends. A few point lights ( Create > Light > Point Light) scattered around the islands will also add interesting visual variety. Now it’s time to add a player! First, import the “Standard Assets” package from the Unity Asset Store (if you don’t know how to do this, google the Unity Asset Store to learn about it). In the newly imported Standard Assets Project folder, go to Characters > FirstPersonCharacter > Prefabs. There you will find the FPSController prefab. Drag it into your scene, rename it to “Player” and position it on one of the islands, like so: Delete the old main camera that you had in your scene; the FPSController has its own camera. If you run the project, you should be able to walk around your scene, from island to island. You can also walk in the lava, but it doesn’t harm you, yet. To make the lava an actual threat, we start by giving our player the ability to track its health. In the Project Pane, right-click and select Create > C# Script. Name the script “Player”. Drag the Player script onto the Player object in the Hierarchy view. Open the script in Visual Studio, and add code as follows: This script exposes a variable, maxHealth, which determines how much health the Player starts with and the maximum health they can ever have. It exposes a function to alter the Player’s current health. And it uses a reference to a Text object to display the Player’s current health on screen. Back to Unity, you can now see the Max Health Property exposed in the inspector. Set Max Health to 100. There is also a field for Current Health Label, but we don’t currently have a GUI. To remedy this, in the Hierarchy view, select Create > UI > Canvas and then Create > UI > Label. This will create the UI root and a text label on it. Change the label’s text to “Health:”, the font size to 20 and colour to white. Drag it to the bottom left corner of the screen (and make sure the Rect Transform anchor is set to bottom left). Duplicate that text label, offset it right a little from the previous text label and change the text to “0”. Rename this new label “CurrentHealthLabel”. The GUI should now look like this: In the Hierarchy view, drag CurrentHealthLabel into your Player script’s “Current Health Label” property. If we run now, we’ll have a display in the bottom corner of the screen showing our Player’s health of 100. By itself, this isn’t particularly exciting. Time to add lava! Create a new c# script as before; call it Lava. Add this Lava script to the LavaVolume scene object. Open the script in Visual Studio and insert the following code: Note the TriggerEnter and TriggerExit functions. Because LavaVolume, the object we’ve added this script to, has a collider with Is Trigger checked, whenever another object enters LavaVolume’s box collider, OnTriggerEnter will be called, with the colliding object’s Collider passed as a parameter. Similarly, when an object leaves LavaVolume’s collider volume, OnTriggerExit will be called. Taking advantage of this functionality, we keep a list of all players who enter the lava. Then, during the Update call, if any players are in the lava, we apply damage to them periodically. damageTickTime determines an interval between every time we apply damage (a “tick”), and damagePerTick determines how much damage we apply per tick. Both properties are exposed in the Inspector by the script, so that they’re customizable. Set the values to Damage Per Tick = 5 and Damage Tick Time = 0.1. Now, if we run the game, stepping in the lava hurts! But, it’s a bit of an anti-climax, since nothing actually happens when our health gets down to 0. Let’s make things a little more fatal. First, use a paint program to create a “You Died!” screen at 1920 x 1080 resolution. Add that image to the project. Under the Import Settings, set the Texture Type to Sprite (2D and UI). Then, from the Hierarchy, select Create > UI > Image. Make the size 1920 x 1080, and set the Source Image property to your new player died sprite image. Go back to your Player Script and extend the code as follows: The additions add a reference to the player died screen, and code in the CheckDead function to check if the player’s health reaches 0, displaying the death screen if it does. The function also disables the FirstPersonController script if the player dies, so that the player can’t continue to move Player around via keyboard/mouse input after Player has died. Return to the Hierarchy view, and drag the player died screen into the exposed Dead Screen property on the Player script. Now, if you run the game, stepping in lava will “kill” the player if they stay in it long enough. Better! But it’s only fair to add a way for the Player to recover health, too. To do so, use a paint program to create a new “medkit” texture. Following the same procedure as used to create the LavaVolume, create a new cube called HealthKit, give it a Material that uses this new medkit texture, and enable “Is Trigger” on the cube’s BoxCollider. Create a new C# script called “Health Pickup”, add it to the cube, and insert the following code: Simpler than the Lava script, this adds health to a Player that collides with it, before disabling itself. Scale the HealthKit object until it looks about the right size for a health pack; then copy and paste a few of the packs across the islands. Now, when you play, if you manage to extricate yourself from the lava after falling in, you can collect a health pack to restore your health! And that brings us to the end of the Simple Player Health tutorial. We have a deadly lava level with health pickups, just waiting for enemy characters to be added. About the author Gareth Fouche is a game developer. He can be found on Github at @GarethNN
Read more
  • 0
  • 0
  • 12411

article-image-two-popular-data-analytics-methodologies-every-data-professional-should-know-tdsp-crisp-dm
Amarabha Banerjee
21 Dec 2017
7 min read
Save for later

Two popular Data Analytics methodologies every data professional should know: TDSP & CRISP-DM

Amarabha Banerjee
21 Dec 2017
7 min read
[box type="note" align="" class="" width=""]This is a book excerpt taken from Advanced Analytics with R and Tableau authored by Jen Stirrup & Ruben Oliva Ramos. This book will help you make quick, cogent, and data driven decisions for your business using advanced analytical techniques on Tableau and R.[/box] Today we explore popular data analytics methods such as Microsoft TDSP Process and the CRISP- DM methodology. Introduction There is an increasing amount of data in the world, and in our databases. The data deluge is not going to go away anytime soon! Businesses risk wasting the useful business value of information contained in databases, unless they are able to excise useful knowledge from the data. It can be hard to know how to get started. Fortunately, there are a number of frameworks in data science that help us to work our way through an analytics project. Processes such as Microsoft Team Data Science Process (TDSP) and CRISP-DM position analytics as a repeatable process that is part of a bigger vision. Why are they important? The Microsoft TDSP Process and the CRISP-DM frameworks are frameworks for analytics projects that lead to standardized delivery for organizations, both large and small. In this chapter, we will look at these frameworks in more detail, and see how they can inform our own analytics projects and drive collaboration between teams. How can we have the analysis shaped so that it follows a pattern so that data cleansing is included? Industry standard methodologies for analytics There are a few main methodologies: the Microsoft TDSP Process and the CRISP-DM Methodology. Ultimately, they are all setting out to achieve the same objectives as an analytics framework. There are differences, of course, and these are highlighted here. CRISP-DM and TDSP focus on the business value and the results derived from analytics projects. Both of these methodologies are described in the following sections. CRISP-DM One common methodology is the CRISP-DM methodology (the modeling agency). The Cross Industry Standard Process for Data Mining or (CRISP-DM) model as it is known, is a process model that provides a fluid framework for devising, creating, building, testing, and deploying machine learning solutions. The process is loosely divided into six main phases. The phases can be seen in the following diagram: Initially, the process starts with a business idea and a general consideration of the data. Each stage is briefly discussed in the following sections. Business understanding/data understanding The first phase looks at the machine learning solution from a business standpoint, rather than a technical standpoint. The business idea is defined, and a draft project plan is generated. Once the business idea is defined, the data understanding phase focuses on data collection and familiarity. At this point, missing data may be identified, or initial insights may be revealed. This process feeds back to the business understanding phase. CRISP-DM model — data preparation In this stage, data will be cleansed and transformed, and it will be shaped ready for the modeling phase. CRISP-DM — modeling phase In the modeling phase, various techniques are applied to the data. The models are further tweaked and refined, and this may involve going back to the data preparation phase in order to correct any unexpected issues. CRISP-DM — evaluation The models need to be tested and verified to ensure that they meet the business objectives that were defined initially in the business understanding phase. Otherwise, we may have built models that do not answer the business question. CRISP-DM — deployment The models are published so that the customer can make use of them. This is not the end of the story, however. CRISP-DM — process restarted We live in a world of ever-changing data, business requirements, customer needs, and environments, and the process will be repeated. CRISP-DM summary CRISP-DM is the most commonly used framework for implementing machine learning projects specifically, and it applies to analytics projects as well. It has a good focus on the business understanding piece. However, one major drawback is that the model no longer seems to be actively maintained. The official site, CRISP-DM.org, is no longer being maintained. Furthermore, the framework itself has not been updated on issues on working with new technologies, such as big data. Big data technologies means that there can be additional effort spend in the data understanding phase, for example, as the business grapples with the additional complexities that are involved in the shape of big data sources. Team Data Science Process The TDSP process model provides a dynamic framework to machine learning solutions that have been through a robust process of planning, producing, constructing, testing, and deploying models. Here is an example of the TDSP process: The process is loosely divided into four main phases: Business Understanding Data Acquisition and Understanding Modeling Deployment The phases are described in the following paragraphs. Business understanding The Business understanding process starts with a business idea, which is solved with a machine learning solution. The business idea is defined from the business perspective, and possible scenarios are identified and evaluated. Ultimately, a project plan is generated for delivering the solution. Data acquisition and understanding Following on from the business understanding phase is the data acquisition and understanding phase, which concentrates on familiarity and fact-finding about the data. The process itself is not completely linear; the output of the data acquisition and understanding phase can feed back to the business understanding phase, for example. At this point, some of the essential technical pieces start to appear, such as connecting to data, and the integration of multiple data sources. From the user's perspective, there may be actions arising from this effort. For example, it may be noted that there is missing data from the dataset, which requires further investigation before the project proceeds further. Modeling In the modeling phase of the TDSP process, the R model is created, built, and verified against the original business question. In light of the business question, the model needs to make sense. It should also add business value, for example, by performing better than the existing solution that was in place prior to the new R model. This stage also involves examining key metrics in evaluating our R models, which need to be tested to ensure that the models meet the original business objectives set out in the initial business understanding phase. Deployment R models are published to production, once they are proven to be a fit solution to the original business question. This phase involves the creation of a strategy for ongoing review of the R model's performance as well as a monitoring and maintenance plan. It is recommended to carry out a recurrent evaluation of the deployed models. The models will live in a fluid, dynamic world of data and, over time, this environment will impact their efficacy. The TDSP process is a cycle rather than a linear process, and it does not finish, even if the model is deployed. It is comprised of a clear structure for you to follow throughout the Data Science process, and it facilitates teamwork and collaboration along the way. TDSP Summary The data science unicorn does not exist; that is, the person who is equally skilled in all areas of data science, right across the board. In order to ensure successful projects where each team player contributes according to their skill set, the Team Data Science Summary is a team-oriented solution that emphasizes teamwork and collaboration throughout. It recognizes the importance of working as part of a team to deliver Data Science projects. It also offers useful information on the importance of having standardized source control and backups, which can include open source technology. If you liked our post, please be sure to check out Advanced Analytics with R and Tableau that shows how to apply various data analytics techniques in R and Tableau across the different stages of a data science project highlighted in this article.  
Read more
  • 0
  • 0
  • 12287

article-image-the-best-backend-tools-in-web-development
Sugandha Lahoti
06 Jun 2018
5 min read
Save for later

The best backend tools in web development

Sugandha Lahoti
06 Jun 2018
5 min read
If you’re a backend developer, it’s easy to feel overwhelmed by the range of backend development tools available. It goes without saying that you should use what works for you but sometimes it’s not that easy to even work that out. With this in mind, this year’s Skill Up report offers a useful insight into some of the most popular backend tools being used today. Let’s take a look at what tools came out on top. That should help you make decisions about what you’re going to use or maybe even just learn. Read the Skill Up report in full. Sign up to our weekly newsletter and download the PDF for free. Node.js More than 50% respondents said, they prefer Node.js, the popular server-side Javascript coding framework. Node.js is a Javascript runtime that runs on the V8 JavaScript runtime engine. Node.js adds capabilities to Javascript (front-end language) to let it do more than just creating interactive websites. It uses an event-driven, non-blocking I/O model that makes it lightweight and efficient. The latest stable release of Node, Node 10, will be the next candidate in line for the Long Term Support (LTS) in October 2018. Node.js 10.0 comes with plenty of new features like OpenSSL 1.1.0 security toolkit, upgraded npm, N-API, and much more. Get started with learning Node.js with the following books: Learning Node.js Development Learn Node.js by Building 6 Projects RESTful Web API Design with Node.js 10 - Third Edition ASP.NET Core The next popular alternative was ASP. NET Core with over 25% developers approving it as their choice of backend framework. ASP.NET Core is the open-source cross-platform framework for building backends, web apps and services, and IoT apps. According to the skill-up survey, it was also one of the most popular framework used by developers. It provides a cloud-ready, environment-based configuration system. It seamlessly integrates with popular client-side frameworks and libraries, including Angular, React, and Bootstrap. Get started with ASP.NET Core by reading: Learning ASP.NET Core 2.0 Mastering ASP.NET Core 2.0 ASP.NET Core 2 High Performance - Second Edition Express.js Developers and tech pros also like to work with Express JS, and hence it ranked No. 3 on our list. Express JS is the pre-built Node JS framework that can help developers build faster and smarter websites and web apps. Express basically extends Node.js to build complete web apps. It is the perfect framework to learn for developers, who are fluent in Node.js, but want to transition to creating apps from just server-side technologies. Express is lightweight and comes with extra, built-in web application features and the Express API to support the already robust, feature-packed Node.js platform. Express is not just limited to NodeJS. It also works seamlessly with other modules and offers HTTP utilities and middleware for creating APIs. It can help developers master single-page and multiple-page websites, as well as some complex web apps. You can go through Projects in ExpressJS [Video], a complete course to learn professional web development using Express.js. Laravel Next, was Laravel, a prominent member of a new generation of web frameworks. It is one of the most popular PHP frameworks and is also free and and open source. It features: A simple, fast routing engine Powerful dependency injection container Multiple back-ends for session and cache storage Database agnostic schema migrations Robust background job processing Real-time event broadcasting The latest stable release, Laravel 5 is a substantial upgrade with a lot of new toys, at the same time retaining the features that made Laravel wildly successful. It comes with plenty of architectural as well as design-based changes. Start building with Laravel with these videos. Beginning Laravel [Video] Laravel Foundations: Basics to Every App [Video] Java EE The fifth most popular choice of backend tool is the Java EE. The Enterprise Java standard or Java EE is a collection of technologies and APIs for the Java platform designed to support Enterprise. By enterprise, we mean applications classified as large-scale, distributed, transactional and highly-available, designed to support mission-critical business requirements. Applications written to comply with the Java EE specification do not tie developers to a specific vendor; instead, they can be deployed to any Java EE compliant application server. The Java EE server application implements the Java EE platform APIs and provides the standard Java EE services. The latest stable release, Java EE 8 brings with it a load of features, mainly targeting newer architectures such as microservices, modernized security APIs, and cloud deployments. Our best picks for learning Java EE: Java EE 8 Application Development Architecting Modern Java EE Applications Java EE 8 High Performance The other backend tools which were among the top picks by developers included: Spring, a programming and configuration model for building modern Java-based enterprise applications, on any kind of deployment platform. Django, a powerful Python web framework for creating RESTful web services. It reduces the amount of trivial code, which simplifies the creation of web applications and results in faster development. Flask, a framework for building web servers in Python. It is a micro framework, meaning it’s not a full stack web application development framework. It just gives the developers very basics to get a web server running. Firebase, Google’s mobile platform to help developers run mobile backend code without managing servers and develop high-quality apps. Ruby on Rails, one of the oldest, backend technology. A certain percentage of people still prefer using ruby on rails for their backend code. Rails is a flexible and IDE friendly framework with easy functions and manipulations and the support of the powerful ruby language. The entire skill up survey report can be read on the Packt website, which details on what developers think about the changing tech landscape and the parameters that are driving that change. This survey report is launched at the start of the Skill Up campaign, where every eBook and video will be available for $10. Go grab your free content now!
Read more
  • 0
  • 0
  • 12265
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-how-do-you-become-a-developer-advocate
Packt Editorial Staff
11 Oct 2019
8 min read
Save for later

How do you become a developer advocate?

Packt Editorial Staff
11 Oct 2019
8 min read
Developer advocates are people with a strong technical background, whose job is to help developers be successful with a platform or technology. They act as a bridge between the engineering team and the developer community. A developer advocate does not only fill in the gap between developers and the platform but also looks after the development of developers in terms of traction and progress on their projects. Developer advocacy, is broadly referred to as "developer relations". Those who practice developer advocacy have fallen into in this profession in one way or another. As the processes and theories in the world of programming have evolved over several years, so has the idea of developer advocacy. This is the result of developer advocates who work in the wild using their own initiatives. This article is an excerpt from the book Developer, Advocate! by Geertjan Wielenga. This book serves as a rallying cry to inspire and motivate tech enthusiasts and burgeoning developer advocates to take their first steps within the tech community. The question then arises, how does one become a developer advocate? Here are some experiences shared by some well-known developer advocates on how they started the journey that landed them to this role. Is developer advocacy taught in universities? Bruno Borges, Principal Product Manager at Microsoft says, for most developer advocates or developer relations personnel, it was something that just happened. Developer advocacy is not a discipline that is taught in universities; there's no training specifically for this. Most often, somebody will come to realize that what they already do is developer relations. This is a discipline that is a conjunction of several other roles: software engineering, product management, and marketing. I started as a software engineer and then I became a product manager. As a product manager, I was engaged with marketing divisions and sales divisions directly on a weekly basis. Maybe in some companies, sales, marketing, and product management are pillars that are not needed. I think it might vary. But in my opinion, those pillars are essential for doing a proper developer relations job. Trying to aim for those pillars is a great foundation. Just as in computer science when we go to college for four years, sometimes we don't use some of that background, but it gives us a good foundation. From outsourcing companies that just built business software for companies, I then went to vendor companies. That's where I landed as a person helping users to take full advantage of the software that they needed to build their own solutions. That process is, ideally, what I see happening to others. The journey of a regular tech enthusiast to a developer advocate Ivar Grimstad, a developer advocate at Eclipse foundation, speaks about his journey from being a regular tech enthusiast attending conferences to being there speaking at conferences as an advocate for his company. Ivar Grimstad says, I have attended many different conferences in my professional life and I always really enjoyed going to them. After some years of regularly attending conferences, I came to the point of thinking, "That guy isn't saying anything that I couldn't say. Why am I not up there?" I just wanted to try speaking, so I started submitting abstracts. I already gave talks at meetups locally, but I began feeling comfortable enough to approach conferences. I continued submitting abstracts until I got accepted. As it turned out, while I was becoming interested in speaking, my company was struggling to raise its profile. Nobody, even in Sweden, knew what we did. So, my company was super happy for any publicity it could get. I could provide it with that by just going out and talking about tech. It didn't have to be related to anything we did; I just had to be there with the company name on the slides. That was good enough in the eyes of my company. After a while, about 50% of my time became dedicated to activities such as speaking at conferences and contributing to open source projects. Tables turned from being an engineer to becoming a developer advocate Mark Heckler, a Spring developer and advocate at Pivotal, narrates his experience about how tables turned for him from University to Pivotal Principal Technologist & Developer Advocate. He says, initially, I was doing full-time engineering work and then presenting on the side. I was occasionally taking a few days here and there to travel to present at events and conferences. I think many people realized that I had this public-facing level of activities that I was doing. I was out there enough that they felt I was either doing this full-time or maybe should be. A good friend of mine reached out and said, "I know you're doing this anyway, so how would you like to make this your official role?" That sounded pretty great, so I interviewed, and I was offered a full-time gig doing, essentially, what I was already doing in my spare time. A hobby turned out to be a profession Matt Raible, a developer advocate at Okta has worked as an independent consultant for 20 years. He did advocacy as a side hobby. He talks about his experience as a consultant and walks through the progress and development. I started a blog in 2002 and wrote about Java a lot. This was before Stack Overflow, so I used Struts and Java EE. I posted my questions, which you would now post on Stack Overflow, on that blog with stack traces, and people would find them and help. It was a collaborative community. I've always done the speaking at conferences on the side. I started working for Stormpath two years ago, as a contractor part-time, and I was working at Computer Associates at the same time. I was doing Java in the morning at Stormpath and I was doing JavaScript in the afternoon at Computer Associates. I really liked the people I was working with at Stormpath and they tried to hire me full-time. I told them to make me an offer that I couldn't refuse, and they said, "We don't know what that is!" I wanted to be able to blog and speak at conferences, so I spent a month coming up with my dream job. Stormpath wanted me to be its Java lead. The problem was that I like Java, but it's not my favorite thing. I tend to do more UI work. The opportunity went away for a month and then I said, "There's a way to make this work! Can I do Java and JavaScript?" Stormpath agreed that instead of being more of a technical leader and owning the Java SDK, I could be one of its advocates. There were a few other people on board in the advocacy team. Six months later, Stormpath got bought out by Okta. As an independent consultant, I was used to switching jobs every six months, but I didn't expect that to happen once I went full-time. That's how I ended up at Okta! Developer advocacy can be done by calculating the highs and lows of the tech world Scott Davis, a Principal Engineer at Thoughtworks, was also a classroom instructor, teaching software classes to business professionals before becoming a developer advocate. As per him, tech really is a world of strengths and weaknesses. Advocacy, I think, is where you honestly say, "If we balance out the pluses and the minuses, I'm going to send you down the path where there are more strengths than weaknesses. But I also want to make sure that you are aware of the sharp, pointy edges that might nick you along the way." I spent eight years in the classroom as a software instructor and that has really informed my entire career. It's one thing to sit down and kind of understand how something works when you're cowboy coding on your own. It's another thing altogether when you're standing up in front of an audience of tens, or hundreds, or thousands of people. Discover how developer advocates are putting developer interests at the heart of the software industry in companies including Microsoft and Google with Developer, Advocate! by Geertjan Wielenga. This book is a collection of in-depth conversations with leading developer advocates that reveal the world of developer relations today. 6 reasons why employers should pay for their developers’ training and learning resources “Developers need to say no” – Elliot Alderson on the FaceApp controversy in a BONUS podcast episode [Podcast] GitHub has blocked an Iranian software developer’s account How do AWS developers manage Web apps? Are you looking at transitioning from being a developer to manager? Here are some leadership roles to consider
Read more
  • 0
  • 0
  • 12139

article-image-why-is-data-science-important
Richard Gall
24 Apr 2018
3 min read
Save for later

Why is data science important?

Richard Gall
24 Apr 2018
3 min read
Is data science important? It's a term that's talked about a lot but often misunderstood. Because it's a buzzword it's easy to dismiss; but data science is important. Behind the term lies very specific set of activities - and skills - that businesses can leverage to their advantage. Data science allows businesses to use the data at their disposal, whether that's customer data, financial data or otherwise, in an intelligent manner. It's results should be a key driver of growth. However, although it’s not wrong to see data science as a real game changer for business, that doesn’t mean it’s easy to do well. In fact, it’s pretty easy to do data science badly. A number of reports suggest that a large proportion of analytics projects fail to deliver results. That means a huge number of organizations are doing data science wrong. Key to these failures is a misunderstanding of how to properly utilize data science. You see it so many times - buzzwords like data science are often like hammers. They make all your problems look like nails. And not properly understanding the business problems you’re trying to solve is where things go wrong. What is data science? But what is data science exactly? Quite simply, it’s about using data to solve problems. The scope of these problems is huge. Here are a few ways data science can be used: Improving customer retention by finding out what the triggers of churn might be Improving internal product development processes by looking at points where faults are most likely to happen Targeting customers with the right sales messages at the right time Informing product development by looking at how people use your products Analyzing customer sentiment on social media Financial modeling As you can see data science is a field that can impact every department. From marketing to product management to finance, data science isn’t just a buzzword, it’s a shift in mindset about how we work. Data science is about solving business problems To anyone still asking is data science important, the answer is actually quite straightforward. It's important because it solves business problems. Once you - and management - recognise that fact, you're on the right track. Too often businesses want machine learning, big data projects without thinking about what they’re really trying to do. If you want your data scientists to be successful, present them with the problems - let them create the solutions. They won’t want to be told to simply build a machine learning project. It’s crucial to know what the end goal is. Peter Drucker once said “in God we trust… everyone else must bring data”. But data science didn’t really exist then - if it did it could be much simpler: trust your data scientists.
Read more
  • 0
  • 0
  • 11984

article-image-what-micro-frontend
Amit Kothari
08 Oct 2017
6 min read
Save for later

What is a micro frontend?

Amit Kothari
08 Oct 2017
6 min read
The microservice architecture enables us to write scalable and agile backend systems. Writing independent, self-contained services give us the flexibility to quickly add a new feature or easily change an existing one without affecting the whole system. Independently deployable services also allow us to scale our services as per the demand. We will show you how you can use a similar approach for frontend applications. You will learn about micro frontend architecture, its benefits, and strategy to break down a monolith web app into micro frontends. What is micro frontend architecture? Micro frontend architecture is an approach to developing web application as a composition of small frontend apps. Instead of writing a large monolith frontend application, the application is broken down into domain specific micro frontends, which are self-contained and can be developed and deployed independently. Advantages of using micro frontends Micro frontends bring the concept and benefits of micro services to frontend applications. Each micro frontend is self-contained, which allows faster delivery as multiple teams can work on different parts of the application without affecting each other. This also gives each team the freedom to choose different technology as required. Since the micro frontends are highly decoupled, they have a lower impact on other parts of the application and can be enhanced and deployed independently. Design considerations Let's say we want to build an online shopping website using micro frontend architecture. Instead of developing the site as one large application, we can split the website into micro frontends. For example, the pages to display lists of products and product details can be one micro frontend and the pages to show order history of a user can be another micro frontend. The user interface is made up of multiple micro frontends, but we do not want our users to feel that different pages are part of different apps. Here are some of the practices we can use to decompose a frontend application into smaller micro frontends, without compromising user experience. Single responsibility The first thing to consider is how to split an application into smaller apps so that each app can be developed and deployed independently. When teams are working on the different micro frontends, we want the apps to be highly decoupled so that a change in one app would not affect the other apps. This can be achieved by building domain specific micro frontends with single responsibility and well-defined bounded context. Just like our code, we want our micro frontends to have high cohesion and low coupling i.e. all the related code should be close to each other and less dependent on other modules. If we take the example of our online shopping site again, we want all the product related UI components in the product micro frontend and all the order related functionality in the order micro frontend. Let's say we have a user dashboard screen where users can see information from different domains, they can see their pending orders and also products which are on specials. Instead of creating a dashboard micro frontend, it is recommended to have the pending order UI component as part of order micro frontend and product related components as part of product micro frontend. This will allow us to split our system vertically and have domain specific frontend and backend services. Common interface for communication and data exchange For micro frontends to work harmoniously as a single web application, they need a common and consistent way to communicate with each other. Even if they are highly independent, they still need to talk to each other. One of the common approaches is to have an application that works as an integration layer. The app can work as a container to render different micro frontends and also facilitate communication between them. For example, in our online shopping website, once a user submits an order through the shopping cart micro frontend, we want to take the user to their order lists screen. Since both the order and shopping cart micro frontends are highly decoupled and do not know about each other, we can use the container app as the orchestration layer. On receiving order submission events from the shopping cart micro frontend, the container app will navigate the user to the order micro frontend. The container app can also be used to handle cross cutting concerns like user session management, analytics, etc. This approach works well with existing monolith frontends where the existing monolith application can work as the container and any new feature can be independently developed as a micro frontend and can be integrated into the existing app. The existing functionality can be also extracted and rewritten as micro frontends as required. Consistent look and feel Although our user interface is divided into multiple micro frontends, we still want our users to feel as if they are interacting with a single application. We want our apps to have a consistent look and feel, and also the ability to make UI changes easily across multiple apps. For example, we should be able to change the font or the primary colors across multiple micro frontends. This can be done by sharing CSS and assets like images, fonts, icons, etc. We also want the apps to use same UI components, for example, if we have date picker on multiple screens, we want all the date pickers to look the same. This can be achieved by creating a common library of UI components, which can be shared by micro frontends. Using shared assets and a UI component library will allow us to make changes easily instead of having to update multiple micro frontends. In this post, we discussed micro frontends, their benefits, and things to consider before migrating to micro frontend architecture. To deliver faster, we want the ability to build, test, and deploy features independently and this can be achieved by using micro frontends and microservices. Implementing micro frontends may present its own challenges and there will be technical hurdles to overcome but the benefits outweigh the complexity. If you are using micro frontend architecture, please share your experience with us. About the author Amit Kothari is a full stack software developer based in Melbourne, Australia. He has 10+ years experience in designing and implementing software mainly in Java/JEE. His recent experience is in building web application using JavaScript frameworks like React and AngularJS and backend micro services/ REST API in Java. He is passionate about lean software development and continuous delivery.
Read more
  • 0
  • 0
  • 11892

article-image-systems-programming-go-unix-linux
Mihalis Tsoukalos
24 Jan 2018
17 min read
Save for later

Systems programming with Go in UNIX and Linux

Mihalis Tsoukalos
24 Jan 2018
17 min read
This is a guest post by Mihalis Tsoukalos. Mihalis is a Unix administrator, programmer, and Mathematician who enjoys writing. He is the author of Go Systems Programming from which this Go programming tutorial is taken. What is Go? Back when UNIX was first introduced, the only way to write systems software was by using C; nowadays you can program systems software using programming languages including Go. Apart from Go, other preferred languages for developing system utilities are Python, Perl, Rust and Ruby. Go is a modern generic purpose open-source programming language that was officially announced at the end of 2009, was begun as an internal Google project and has been inspired by many other programming languages including C, Pascal, Alef and Oberon. Its spiritual fathers are Robert Griesemer, Ken Thomson and Rob Pike that designed Go as a language for professional programmers that want to build reliable and robust software. Apart from its syntax and standard functions, Go comes with a pretty rich and convenient standard library. What is systems programming? Systems programming is a special area of programming on UNIX machines. Please note that Systems programming is not limited to UNIX machines. Most commands that have to do with System Administration tasks such as disk formatting, network interface configuration, module loading, kernel performance tracking, and so on, are implemented using the techniques of Systems Programming. Additionally, the /etc directory, which can be found on all UNIX systems, contains plain text files that deal with the configuration of a UNIX machine and its services and are also manipulated using systems software. You can group the various areas of systems software and related system calls in the following sets: File I/O: This area deals with file reading and writing operations, which is the most important task of an operating system. File input and output must be fast and efficient and, above all, it must be reliable. Advanced File I/O: Apart from the basic input and output system calls, there are also more advanced ways to read or write a file including asynchronous I/O and non-blocking I/O. System files and Configuration: This group of systems software includes functions that allow you to handle system files such as /etc/password and get system specific information such as system time and DNS configuration. Files and Directories: This cluster includes functions and system calls that allow the programmer to create and delete directories and get information such as the owner and the permissions of a file or a directory. Process Control: This group of software allows you to create and interact with UNIX processes. Threads: When a process has multiple threads, it can perform multiple tasks. However, threads must be created, terminated and synchronized, which is the purpose of this collection of functions and system calls. Server Processes: This set includes techniques that allow you to develop server processes, which are processes that get executed in the background without the need for an active terminal. Go is not that good at writing server processes in the traditional UNIX way – but let me explain this a little more. UNIX servers like Apache use fork(2) to create one or more children processes; this process is called forking and refers to cloning the parent process into a child process and continue executing the same executable from the same point and, most importantly, sharing memory. Although Go does not offer an equivalent to the fork(2) function this is not an issue because you can use goroutines to cover most of the uses of fork(2). Interprocess Communication: This set of functions allows processes that run on the same UNIX machine to communicate with each other using features such as pipes, FIFOs, message queues, semaphores and shared memory. Signal Processing: Signals offer processes a way of handling asynchronous events, which can be very handy. Almost all server processes have extra code that allows them to handle UNIX signals using the system calls of this group. Network Programming: This is the art of developing applications that work over computer networks with the he€lp of TCP/IP and is not Systems programming per se. However, most TCP/IP servers and clients are dealing with system resources, users, files and directories so most of the times you cannot create network applications without doing some kind of Systems programming. The challenging thing with Systems programming is that you cannot afford to have an incomplete program; you can either have a fully working, secure program that can be used on a production system or nothing at all. This mainly happens because you cannot trust end users and hackers! The key difficulty in systems programming is the fact that an erroneous system call can make your UNIX machine misbehave or, even worst, crash it! Most security issues on UNIX systems usually come from wrongly implemented systems software because bugs in systems software can compromise the security of an entire system. The worst part is that this can happen many years after using a certain piece of software! Systems programming examples with Go Printing the permission of a file or a directory With the help of the ls(1) command, you can find out the permissions of a file: $ ls -l /bin/ls -rwxr-xr-x 1 root wheel 38624 Mar 23 01:57 /bin/ls The presented Go program, which is named permissions.go, will teach you how to print the permissions of a file or a directory using Go and will be presented in two parts. The first part is the next: package main import ( "fmt" "os" ) func main() { arguments := os.Args if len(arguments) == 1 { fmt.Println("Please provide an argument!") os.Exit(1) } file := arguments[1] The second part contains the important Go code: info, err := os.Stat(file) if err != nil { fmt.Println("Error:", err) os.Exit(1) } mode := info.Mode() fmt.Print(file, ": ", mode, "n") } Once again most of the Go code is for dealing with the command line argument and making sure that you have one! The Go code that does the actual job is mainly the call to the os.Stat() function, which returns a FileInfo structure that describes the file or directory examined by os.Stat(). From the FileInfo structure you can discover the permissions of a file by calling the Mode() function. Executing permissions.go creates the following kind of output: $ go run permissions.go /bin/ls /bin/ls: -rwxr-xr-x $ go run permissions.go /usr /usr: drwxr-xr-x $ go run permissions.go /us Error: stat /us: no such file or directory exit status 1 How to write to files using fmt.Fprintf() The use of the fmt.Fprintf() function allows you to write formatted text to files in a way that is similar to the way the fmt.Printf() function works. The Go code that illustrates the use of fmt.Fprintf() will be named fmtF.go and is going to be presented in three parts. The first part is the expected preamble of the program: package main import ( "fmt" "os" ) The second part has the next Go code: func main() { if len(os.Args) != 2 { fmt.Println("Please provide a filename") os.Exit(1) } filename := os.Args[1] destination, err := os.Create(filename) if err != nil { fmt.Println("os.Create:", err) os.Exit(1) } defer destination.Close() First, you make sure that you have one command line argument before continuing. Then, you read that command line argument and you give it to os.Create() in order to create it! Please note that the os.Create() function will truncate the file if it already exists. The last part is the following: fmt.Fprintf(destination, "[%s]: ", filename) fmt.Fprintf(destination, "Using fmt.Fprintf in %sn", filename) } Here, you write the desired text data to the file that is identified by the destination variable using fmt.Fprintf() as if you were using the fmt.Printf() method. Executing fmtF.go will generate the following output: $ go run fmtF.go test $ cat test [test]: Using fmt.Fprintf in test In other words, you can create plain text files using fmt.Fprintf(). Developing wc(1) in Go The principal idea behind the code of the wc.go program is that you read a text file line by line until there is nothing left to read. For each line you read you find out the number of characters and the number of words it has. As you need to read your input line by line, the use of bufio is preferred instead of the plain io because it simplifies the code. However, trying to implement wc.go on your own using io would be a very educational exercise. But first you will see the kind of output the wc(1) utility generates: $ wcwc.gocp.go 68 160 1231wc.go 45 112 755cp.go 113 272 1986 total So, if wc(1) has to process more than one file, it automatically generates summary information. Counting words The trickiest part of the implementation is word counting, which is implemented using Go regular expressions: r := regexp.MustCompile("[^s]+") for range r.FindAllString(line, -1) { numberOfWords++ } What the provided regular expression does is separating the words of a line based on whitespace characters in order to count them afterwards! The code! After this little introduction, it is time to see the Go code of wc.go, which will be presented in five parts. The first part is the expected preamble: import ( "bufio" "flag" "fmt" "io" "os" "regexp" ) The second part is the implementation of the count() function, which includes the core functionality of the program: func count(filename string) (int, int, int) { var err error varnumberOfLinesint varnumberOfCharactersint varnumberOfWordsint numberOfLines = 0 numberOfCharacters = 0 numberOfWords = 0 f, err := os.Open(filename) if err != nil { fmt.Printf("error opening file %s", err) os.Exit(1) } defer f.Close() r := bufio.NewReader(f) for { line, err := r.ReadString('n') if err == io.EOF { break } else if err != nil { fmt.Printf("error reading file %s", err) } numberOfLines++ r := regexp.MustCompile("[^s]+") for range r.FindAllString(line, -1) { numberOfWords++ } numberOfCharacters += len(line) } return numberOfLines, numberOfWords, numberOfCharacters } There exist lot of interesting things here. First of all, you can see the Go code presented in the previous section for counting the words of each line. Counting lines is easy because each time the bufio reader reads a new line the value of the numberOfLines variable is increased by one. The ReadString() function tells the program to read until the first occurrence of a 'n' in the input – multiple calls to ReadString() mean that you are reading a file line by line. Next, you can see that the count() function returns three integer values. Last, counting characters is implemented with the help of the len() function that returns the number of characters in a given string, which in this case is the line that was read. The for loop terminates when you get the io.EOF error message, which signifies that there is nothing left to read from the input file. The third part of wc.go starts with the beginning of the implementation of the main() function, which also includes the configuration of the flag package: func main() { minusC := flag.Bool("c", false, "Characters") minusW := flag.Bool("w", false, "Words") minusL := flag.Bool("l", false, "Lines") flag.Parse() flags := flag.Args() if len(flags) == 0 { fmt.Printf("usage: wc<file1> [<file2> [... <fileN]]n") os.Exit(1) } totalLines := 0 totalWords := 0 totalCharacters := 0 printAll := false for _, filename := range flag.Args() { The last for statement is for processing all input files given to the program. The wc.go program supports three flags: the -c flag is for printing the character count, the -w flag is for printing the word count and the -l flag is for printing the line count. The fourth part is the next: numberOfLines, numberOfWords, numberOfCharacters := count(filename) totalLines = totalLines + numberOfLines totalWords = totalWords + numberOfWords totalCharacters = totalCharacters + numberOfCharacters if (*minusC&& *minusW&& *minusL) || (!*minusC&& !*minusW&& !*minusL) { fmt.Printf("%d", numberOfLines) fmt.Printf("t%d", numberOfWords) fmt.Printf("t%d", numberOfCharacters) fmt.Printf("t%sn", filename) printAll = true continue } if *minusL { fmt.Printf("%d", numberOfLines) } if *minusW { fmt.Printf("t%d", numberOfWords) } if *minusC { fmt.Printf("t%d", numberOfCharacters) } fmt.Printf("t%sn", filename) } This part deals with the printing of the information on a per file basis depending on the command line flags. As you can see, most of the Go code here is for handling the output according to the command line flags. The last part is the following: if (len(flags) != 1) &&printAll { fmt.Printf("%d", totalLines) fmt.Printf("t%d", totalWords) fmt.Printf("t%d", totalCharacters) fmt.Println("ttotal") return } if (len(flags) != 1) && *minusL { fmt.Printf("%d", totalLines) } if (len(flags) != 1) && *minusW { fmt.Printf("t%d", totalWords) } if (len(flags) != 1) && *minusC { fmt.Printf("t%d", totalCharacters) } if len(flags) != 1 { fmt.Printf("ttotaln") } } This is where you print the total number of lines, words and characters read according to the flags of the program. Once again, most of the Go code here is for modifying the output according to the command line flags. Executing wc.go will generated the following kind of output: $ go build wc.go $ ls -l wc -rwxr-xr-x 1 mtsouk staff 2264384 Apr 29 21:10 wc $ ./wcwc.gosparse.gonotGoodCP.go 120 280 2319 wc.go 44 98 697 sparse.go 27 61 418 notGoodCP.go 191 439 3434 total $ ./wc -l wc.gosparse.go 120 wc.go 44 sparse.go 164 total $ ./wc -w -l wc.gosparse.go 120 280 wc.go 44 98 sparse.go 164 378 total If you do not execute go build wc.go in order to create an executable file, then executing go run wc.go using Go source files as arguments will fail because the compiler will try to compile the Go source files instead of treating them as command line arguments to the go run wc.go command: $ go run wc.gosparse.go # command-line-arguments ./sparse.go:11: main redeclared in this block previous declaration at ./wc.go:49 $ go run wc.gowc.go package main: case-insensitive file name collision: "wc.go" and "wc.go" $ go run wc.gocp.gosparse.go # command-line-arguments ./cp.go:35: main redeclared in this block previous declaration at ./wc.go:49 ./sparse.go:11: main redeclared in this block previous declaration at ./cp.go:35 Additionally, trying to execute wc.go on a Linux system with Go version 1.3.3 will fail because it uses features of Go that can be found in newer versions – if you use the latest Go version you will have no problem running wc.go. The error message you will get will be the following: $ go version go version go1.3.3 linux/amd64 $ go run wc.go # command-line-arguments ./wc.go:40: syntax error: unexpected range, expecting { ./wc.go:46: non-declaration statement outside function body ./wc.go:47: syntax error: unexpected } Reading a text file character by character Although reading a text file character by character is not needed for the development of the wc(1) utility, it would be good to know how to implement it in Go. The name of the file will be charByChar.go and will be presented in four parts. The first part comes with the following Go code: import ( "bufio" "fmt" "io/ioutil" "os" "strings" ) Although charByChar.go does not have many lines of Go code, it needs lots of Go standard packages, which is a naïve indication that the task it implements is not trivial. The second part is: func main() { arguments := os.Args if len(arguments) == 1 { fmt.Println("Not enough arguments!") os.Exit(1) } input := arguments[1] The third part is the following: buf, err := ioutil.ReadFile(input) if err != nil { fmt.Println(err) os.Exit(1) } The last part has the next Go code: in := string(buf) s := bufio.NewScanner(strings.NewReader(in)) s.Split(bufio.ScanRunes) for s.Scan() { fmt.Print(s.Text()) } } ScanRunes is a split function that returns each character (rune) as a token. Then the call to Scan() allows us to process each character one by one. There also exist ScanWords and ScanLines for getting words and lines scanned, respectively. If you use fmt.Println(s.Text()) as the last statement to the program instead of fmt.Print(s.Text()), then each character will be printed in its own line and the task of the program will be more obvious. Executing charByChar.go generates the following kind of output: $ go run charByChar.go test package main … The wc(1) command can verify the correctness of the Go code of charByChar.go by comparing the input file with the output generated by charByChar.go: $ go run charByChar.go test | wc 32 54 439 $ wc test 32 54 439 test How to create sparse files in Go Big files that are created with the os.Seek() function may have holes in them and occupy fewer disk blocks than files with the same size but without holes in them; such files are called sparse files. This section will develop a program that creates sparse files. The Go code of sparse.go will be presented in three parts. The first part is: package main import ( "fmt" "log" "os" "path/filepath" "strconv" ) The second part of sparse.go has the following Go code: func main() { if len(os.Args) != 3 { fmt.Printf("usage: %s SIZE filenamen", filepath.Base(os.Args[0])) os.Exit(1) } SIZE, _ := strconv.ParseInt(os.Args[1], 10, 64) filename := os.Args[2] _, err := os.Stat(filename) if err == nil { fmt.Printf("File %s already exists.n", filename) os.Exit(1) } The strconv.ParseInt() function is used for converting the command line argument that defines the size of the sparse file from its string value to its integer value. Additionally, the os.Stat() call makes sure that you will not accidentally overwrite an existing file. The last part is where the action takes place: fd, err := os.Create(filename) if err != nil { log.Fatal("Failed to create output") } _, err = fd.Seek(SIZE-1, 0) if err != nil { fmt.Println(err) log.Fatal("Failed to seek") } _, err = fd.Write([]byte{0}) if err != nil { fmt.Println(err) log.Fatal("Write operation failed") } err = fd.Close() if err != nil { fmt.Println(err) log.Fatal("Failed to close file") } } First, you try to create the desired sparse file using os.Create(). Then, you call fd.Seek() in order to make the file bigger without adding actual data. Last, you write a byte to it using fd.Write(). As you do not have anything more to do with the file, you call fd.Close() and you are done. Executing sparse.go generates the following output: $ go run sparse.go 1000 test $ go run sparse.go 1000 test File test already exists. exit status 1 How can you tell whether a file is a sparse file or not? You will learn in a while, but first let us create some files: $ go run sparse.go 100000 testSparse $ dd if=/dev/urandom bs=1 count=100000 of=noSparseDD 100000+0 records in 100000+0 records out 100000 bytes (100 kB) copied, 0.152511 s, 656 kB/s $ dd if=/dev/urandom seek=100000 bs=1 count=0 of=sparseDD 0+0 records in 0+0 records out 0 bytes (0 B) copied, 0.000159399 s, 0.0 kB/s $ ls -l noSparse DDsparse DDtestSparse -rw-r--r-- 1 mtsoukmtsouk 100000 Apr 29 21:43 noSparseDD -rw-r--r-- 1 mtsoukmtsouk 100000 Apr 29 21:43 sparseDD -rw-r--r-- 1 mtsoukmtsouk 100000 Apr 29 21:40 testSparse So, how can you tell if any of the three files is a sparse file or not? The -s flag of the ls(1) utility shows the number of file system blocks actually used by a file. So, the output of the ls -ls command allows you to detect if you are dealing with a sparse file or not: $ ls -ls noSparse DDsparse DDtestSparse 104 -rw-r--r-- 1 mtsoukmtsouk 100000 Apr 29 21:43 noSparseDD 0 -rw-r--r-- 1 mtsoukmtsouk 100000 Apr 29 21:43 sparseDD 8 -rw-r--r-- 1 mtsoukmtsouk 100000 Apr 29 21:40 testSparse Now look at the first column of the output. The noSparseDD file, which was generated using the dd(1) utility, is not a sparse file. The sparseDD file is a sparse file generated using the dd(1) utility. Last, the testSparse is also a sparse file that was created using sparse.go. Mihalis Tsoukalos is a Unix administrator, programmer, DBA and mathematician who enjoys writing. He is currently writing Mastering Go. His research interests include programming languages, databases and operating systems. He holds a B.Sc in Mathematics from the University of Patras and an M.Sc in IT from University College London (UK). He has written various technical articles for Sys Admin, MacTech, C/C++ Users Journal, Linux Journal, Linux User and Developer, Linux Format and Linux Voice.
Read more
  • 0
  • 0
  • 11861
article-image-what-is-the-reactive-manifesto
Packt Editorial Staff
17 Apr 2018
3 min read
Save for later

What is the Reactive Manifesto?

Packt Editorial Staff
17 Apr 2018
3 min read
The Reactive Manifesto is a document that defines the core principles of reactive programming. It was first released in 2013 by a group of developers led by a man called Jonas Boner (you can find him on Twitter: @jboner). Jonas wrote this in a blog post explaining the reasons behind the manifesto: "Application requirements have changed dramatically in recent years. Both from a runtime environment perspective, with multicore and cloud computing architectures nowadays being the norm, as well as from a user requirements perspective, with tighter SLAs in terms of lower latency, higher throughput, availability and close to linear scalability. This all demands writing applications in a fundamentally different way than what most programmers are used to." A number of high-profile programmers signed the reactive manifesto. Some of the names behind it include Erik Meijer, Martin Odersky, Greg Young, Martin Thompson, and Roland Kuhn. A second, updated version of the Reactive Manifesto was released in 2014 - to date more than 22,000 people have signed it. The Reactive Manifesto underpins the principles of reactive programming You can think of it as the map to the treasure of reactive programming, or like the bible for the programmers of the reactive programming religion. Everyone starting with reactive programming should have a read of the manifesto to understand what reactive programming is all about and what its principles are. The 4 principles of the Reactive Manifesto Reactive systems must be responsive The system should respond in a timely manner. Responsive systems focus on providing rapid and consistent response times, so they deliver a consistent quality of service. Reactive systems must be resilient In case the system faces any failure, it should stay responsive. Resilience is achieved by replication, containment, isolation, and delegation. Failures are contained within each component, isolating components from each other, so when failure has occurred in a component, it will not affect the other components or the system as a whole. Reactive systems must be elastic Reactive systems can react to changes and stay responsive under varying workload. They achieve elasticity in a cost effective way on commodity hardware and software platforms. Reactive systems must be message driven Message driven: In order to establish the resilient principle, reactive systems need to establish a boundary between components by relying on asynchronous message passing. Those are the core principles behind reactive programming put forward by the manifesto. But there's something else that supports the thinking behind reactive programming. That's the standard specification on reactive streams. Reactive Streams standard specifications Everything in the reactive world is accomplished with the help of Reactive Streams. In 2013, Netflix, Pivotal, and Lightbend (previously known as Typesafe) felt a need for a standards specification for Reactive Streams as the reactive programming was beginning to spread and more frameworks for reactive programming were starting to emerge, so they started the initiative that resulted in Reactive Streams standard specification, which is now getting implemented across various frameworks and platforms. You can take a look at the Reactive Streams standard specification here. This post has been adapted from Reactive Programming in Kotlin. Find it on the Packt store here.
Read more
  • 0
  • 1
  • 11829

article-image-diy-iot-projects-you-can-build-under-50
Vijin Boricha
29 Jun 2018
5 min read
Save for later

5 DIY IoT projects you can build under $50

Vijin Boricha
29 Jun 2018
5 min read
Lately, IoT is beginning to play an integral part in various industries, be it at the consumer-level, or at the enterprise side of it. With a lot of big players like Apple, Microsoft, Amazon, and Google entering this market, IoT adoption has scaled tremendously. It is said to have jumped from a hobbyist level to an industry infrastructure where everything functions on smart devices, that can talk. The bulk release of popular IoT products prove that this market is getting bigger and a lot of individuals have been amazed with home automation products such as Amazon Alexa, Apple Homepod, Google Home and others. These devices are one of the most sought-after things for hobbyist and enthusiasts who are interested to do simple automation with sensors. Following are 5 IoT projects ideas that you can build without a hole in the pocket. To learn how to actually build similar kind of projects, check out our books; Internet of Things with Raspberry Pi 3 Smart Internet of Things Projects Raspberry Pi 3 Home Automation Projects Weather control station This project will not only help you measure the room temperature but will also help you measure the altitude and the pressure in the room. For this project you will need the Adafruit Starter Pack for Windows 10 IoT Core on the latest Raspberry Pi kit. Along with the Raspberry Pi Kit you will also be using other sensors that read temperature, pressure, and altitude. To make your weather station advanced, you can connect the device to your cloud account to store the weather data. Hardware Raspberry Pi 2 or 3 Breadboard Adafruit BMP280 Barometric Pressure & Altitude Sensor Software Windows 10 IoT Core Approximate total cost Less than $60 Facial Recognition Door Self-built home security projects are some of the most popular DIY projects because they can be cheaper and simple compared to bulky professional installations. Here's a project that controls entry access using facial recognition, thanks to Microsoft Project Oxford. This project from Mazudo, based on Raspberry Pi and Windows IoT, is posted on Hackster.io. This is a handy project for DIY enthusiasts who want to build a quick security lock for their homes. Hardware Raspberry Pi 3 Breadboard USB camera Relay switch Speaker Software Windows 10 IoT Core Approximate total cost Less than $50 Your very own Alexa Echo Alexa Echo has always been a handy device, which can take notes, schedule reminders for your appointments, and play podcasts for you. Brilliant, isn’t it?  You can build a fully functional customized Alexa Echo with all the features of Alexa, apart from accessing official music servers like Amazon prime. It will also have an integration with recently included third party apps like todoist and Any.do. This DIY Echo can also be connected to your cell phone devices to manage notifications when the timer goes off, and so on. Only one thing that your DIY will be missing is the ability to function as a bluetooth speaker. Hardware Raspberry Pi 3 Breadboard USB speaker and mic Software Raspbian Approximate total cost Less than $50 Pet Feeder You surely don’t want your pet to starve when you’re away, do you? This customized pet feeder is controlled via the internet; set timings and feed your pet automatically later. These pet feeders are directly connected to WiFi using ESP8266 chip. We can easily add features like controlling the device using cell phone and making dashboards using Freeboard. This project can be later upgraded or rightly reprogrammed to fill your snack bowl at regular intervals as well. Hardware Arduino PIR motion sensor ESP8266 ESP-01 Software Arduino IDE ESP8266Flasher.exe Approximate total cost Less than $40 Video Surveillance Robot Video surveillance is a process of monitoring a scenario, person or an environment as a whole. A video surveillance robot can capture the activities happening in the surrounding where it is deployed and can be controlled using a GUI Interface. For further enhancements, you can even connect your device to the cloud and save the recorded data there. Hardware Raspberry Pi ARM Cortex- A7 CPU L293 motor driver Software Raspbian Approximate total cost Less than $50 These are few economical yet highly useful Internet of Things projects, which can be leveraged to improve your daily activities. Still not convinced?. Think of it this way. Buying the microchip board is a one time investment as it can be reused in separate projects. The sensors and other peripherals aren’t that expensive. You might say, it’s just way easier to buy an IoT device. I would argue that, buying an IoT device is not as satisfying as building one for the same purpose. In the end, there are multiple advantages of building one as you can brag about it to your friends and most importantly include it in your resume to give you that edge over others in an interview. Cognitive IoT: How Artificial Intelligence is remoulding Industrial and Consumer IoT Windows 10 IoT Core: What you need to know 5 reasons to choose AWS IoT Core for your next IoT project  
Read more
  • 0
  • 0
  • 11724

article-image-how-develop-game-concept
Raka Mahesa
18 Sep 2017
5 min read
Save for later

How to develop a game concept

Raka Mahesa
18 Sep 2017
5 min read
You may have an idea or a concept for a game and you may like to make a full game based on that concept. Congratulations, you're now taking the first step in the game development process. But you may be unsure of what to do next with your game concept. Fortunately, that’s what we’re here to discuss this.  How to find inspiration for a game idea A game idea or concept can come from a variety of places. You may be inspired by another medium, such as a film or a book, you may have had an exciting experience and want to share it with others, you may be playing another game and think you can do better, or you may just have a sudden flash of inspiration out of nowhere. Because ideas can come from a variety of sources, they can take on a number of different forms and robustness. So it's important to take a step back and have another look at this idea of yours.  How to create a game prototype  What should you do after your game concept has been fleshed out? Well, the next step is to create a simple prototype based on your game concept to see if it is viable and actually fun to play.  Wait, what if this is your first foray into game development and you barely have any programming skill? Well, fortunately, developing a game prototype is a good entry to the world of programming. There are many game development tools out there like GameMaker, Stencyl, and Construct 2 that can help you quickly create a prototype without having to write too many lines of code. These tools are so useful that even seasoned programmers use them to quickly build a prototype.  Should I use a game engine to prototype?  Should you use full-featured, professional game engines for making a prototype? Well, it's completely up to you, but one of the purposes of making a prototype is to be able to test out your ideas easily, so when the idea doesn't work out, you can tweak it quickly. With a full-featured game engine, even though it's powerful, it may take longer to complete simple tasks, and you end up not being able to iterate on your game quick enough.  That's also why most game prototypes are made with just simple shapes or very simple graphics. Creating those kinds of graphics doesn't take a lot of time and allows you to iterate on your game concept quickly. Imagine you're testing out a game concept and found out that enemies that just randomly hop around aren't fun, so you decide to make those enemies simply run on the ground. If you're just using a red square for your hopping enemies, you can use the same square for running enemies. But if you're using, say, frog images for those enemies, you will have to switch to a different image when you want the enemies to run. Why is prototyping so important in game development?  You may wonder why the emphasis is on creating a prototype instead of building the actual game. After all, isn't fleshing out a game concept supposed to make sure the game is fun to play? Well, unfortunately, what seems fun in theory may not be actually fun in practice. Maybe you thought that having a jump stamina would make things more exciting for a player, but after prototyping such a system, you may discover that it actually slow things down and makes the game less fun.  Also, prototyping is not just useful for measuring a game's fun, it's also useful for making sure the player has the kinds of experiences that the game concept wants to deliver. Maybe you have this idea of a game where the hero fights many enemies at once so the player can experience an epic battle. But after you prototyped it, you found out that the game felt chaotic instead of epic. Fortunately with a prototype you can quickly tweak the variables of your enemies to make the game feel more epic and less chaotic.  Using simple graphics  Using simple graphics is important for a game prototype. If players can have a good experience with a prototype that uses simple graphics, imagine the fun they'll have with the final graphics. Simple graphics are good because the experience the player feels is due to the game's functions, and not because of how the game looks.  Next steps  After you're done building the prototype and have proven that your game concept is fun to play, you can move on to the next step in the game development process. Your next step depends on the sort of game you want to make. If it's a massive game with many systems, you might want to create a proper game design document that includes how you want to expand the mechanics of your game. But if the game is on the small side with simple mechanics, you can start building the final product and assets.  Good luck on your game development journey! Raka Mahesa is a game developer at Chocoarts (http://chocoarts.com/), who is interested in digital technology in general. Outside of work hours, he likes to work on his own projects, with Corridoom VR being his latest released game. Raka also regularly tweets as @legacy99. 
Read more
  • 0
  • 0
  • 11681
article-image-neo4j-most-popular-graph-database
Amey Varangaonkar
02 Aug 2018
7 min read
Save for later

Why Neo4j is the most popular graph database

Amey Varangaonkar
02 Aug 2018
7 min read
Neo4j is an open source, distributed data store used to model graph problems. It departs from the traditional nomenclature of database technologies, in which entities are stored in schema-less, entity-like structures called nodes, which are connected to other nodes via relationships or edges. In this article, we are going to discuss the different features and use-cases of Neo4j. This article is an excerpt taken from the book 'Seven NoSQL Databases in a Week' written by Aaron Ploetz et al. Neo4j's best features Aside from its support of the property graph model, Neo4j has several other features that make it a desirable data store. Here, we will examine some of those features and discuss how they can be utilized in a successful Neo4j cluster. Clustering Enterprise Neo4j offers horizontal scaling through two types of clustering. The first is the typical high-availability clustering, in which several slave servers process data overseen by an elected master. In the event that one of the instances should fail, a new master is chosen. The second type of clustering is known as causal clustering. This option provides additional features, such as disposable read replicas and built-in load balancing, that help abstract the distributed nature of the clustered database from the developer. It also supports causal consistency, which aims to support Atomicity Consistency Isolation and Durability (ACID) compliant consistency in use cases where eventual consistency becomes problematic. Essentially, causal consistency is delivered with a distributed transaction algorithm that ensures that a user will be able to immediately read their own write, regardless of which instance handles the request. Neo4j Browser Neo4j ships with Neo4j Browser, a web-based application that can be used for database management, operations, and the execution of Cypher queries. In addition to, monitoring the instance on which it runs, Neo4j Browser also comes with a few built-in learning tools designed to help new users acclimate themselves to Neo4j and graph databases. Neo4j Browser is a huge step up from the command-line tools that dominate the NoSQL landscape. Cache sharding In most clustered Neo4j configurations, a single instance contains a complete copy of the data. At the moment, true sharding is not available, but Neo4j does have a feature known as cache sharding. This feature involves directing queries to instances that only have certain parts of the cache preloaded, so that read requests for extremely large data sets can be adequately served. Help for beginners One of the things that Neo4j does better than most NoSQL data stores is the amount of documentation and tutorials that it has made available for new users. The Neo4j website provides a few links to get started with in-person or online training, as well as meetups and conferences to become acclimated to the community. The Neo4j documentation is very well-done and kept up to date, complete with well-written manuals on development, operations, and data modeling. The blogs and videos by the Neo4j, Inc. engineers are also quite helpful in getting beginners started on the right path. Additionally, when first connecting to your instance/cluster with Neo4j Browser, the first thing that is shown is a list of links directed at beginners. These links direct the user to information about the Neo4j product, graph modeling and use cases, and interactive examples. In fact, executing the play movies command brings up a tutorial that loads a database of movies. This database consists of various nodes and edges that are designed to illustrate the relationships between actors and their roles in various films. Neo4j's versatility demonstrated in its wide use cases Because of Neo4j's focus on node/edge traversal, it is a good fit for use cases requiring analysis and examination of relationships. The property graph model helps to define those relationships in meaningful ways, enabling the user to make informed decisions. Bearing that in mind, there are several use cases for Neo4j (and other graph databases) that seem to fit naturally. Social networks Social networks seem to be a natural fit for graph databases. Individuals have friends, attend events, check in to geographical locations, create posts, and send messages. All of these different aspects can be tracked and managed with a graph database such as Neo4j. Who can see a certain person's posts? Friends? Friends of friends? Who will be attending a certain event? How is a person connected to others attending the same event? In small numbers, these problems could be solved with a number of data stores. But what about an event with several thousand people attending, where each person has a network of 500 friends? Neo4j can help to solve a multitude of problems in this domain, and appropriately scale to meet increasing levels of operational complexity. Matchmaking Like social networks, Neo4j is also a good fit for solving problems presented by matchmaking or dating sites. In this way, a person's interests, goals, and other properties can be traversed and matched to profiles that share certain levels of equality. Additionally, the underlying model can also be applied to prevent certain matches or block specific contacts, which can be useful for this type of application. Network management Working with an enterprise-grade network can be quite complicated. Devices are typically broken up into different domains, sometimes have physical and logical layers, and tend to share a delicate relationship of dependencies with each other. In addition, networks might be very dynamic because of hardware failure/replacement, organization, and personnel changes. The property graph model can be applied to adequately work with the complexity of such networks. In a use case study with Enterprise Management Associates (EMA), this type of problem was reported as an excellent format for capturing and modeling the inter dependencies that can help to diagnose failures. For instance, if a particular device needs to be shut down for maintenance, you would need to be aware of other devices and domains that are dependent on it, in a multitude of directions. Neo4j allows you to capture that easily and naturally without having to define a whole mess of linear relationships between each device. The path of relationships can then be easily traversed at query time to provide the necessary results. Analytics Many scalable data store technologies are not particularly suitable for business analysis or online analytical processing (OLAP) uses. When working with large amounts of data, coalescing desired data can be tricky with relational database management systems (RDBMS). Some enterprises will even duplicate their RDBMS into a separate system for OLAP so as not to interfere with their online transaction processing (OLTP) workloads. Neo4j can scale to present meaningful data about relationships between different enterprise-marketing entities, which is crucial for businesses. Recommendation engines Many brick-and-mortar and online retailers collect data about their customers' shopping habits. However, many of them fail to properly utilize this data to their advantage. Graph databases, such as Neo4j, can help assemble the bigger picture of customer habits for searching and purchasing, and even take trends in geographic areas into consideration. For example, purchasing data may contain patterns indicating that certain customers tend to buy certain beverages on Friday evenings. Based on the relationships of other customers to products in that area, the engine could also suggest things such as cups, mugs, or glassware. Is the customer also a male in his thirties from a sports-obsessed area? Perhaps suggesting a mug supporting the local football team may spark an additional sale. An engine backed by Neo4j may be able to help a retailer uncover these small troves of insight. To summarize, we saw Neo4j is widely used across all enterprises and businesses, primarily due to its speed, efficiency and accuracy. Check out the book Seven NoSQL Databases in a Week to learn more about Neo4j and the other popularly used NoSQL databases such as Redis, HBase, MongoDB, and more. Read more Top 5 programming languages for crunching Big Data effectively Top 5 NoSQL Databases Is Apache Spark today’s Hadoop?
Read more
  • 0
  • 0
  • 11664

article-image-what-does-a-data-science-team-look-like
Fatema Patrawala
21 Nov 2019
11 min read
Save for later

What does a data science team look like?

Fatema Patrawala
21 Nov 2019
11 min read
Until a couple of years ago, people barely knew the term 'data science' which has now evolved into an extremely popular career field. The Harvard Business Review dubbed data scientist within the data science team as the sexiest job of the 21st century and expert professionals jumped on the data is the new oil bandwagon. As per the Figure Eight Report 2018, which takes the pulse of the data science community in the US, a lot has changed rapidly in the data science field over the years. For the 2018 report, they surveyed approximately 240 data scientists and found out that machine learning projects have multiplied and more and more data is required to power them. Data science and machine learning jobs are LinkedIn's fastest growing jobs. And the internet is creating 2.5 quintillion bytes of data to process and analyze each day. With all these changes, it is evident for data science teams to evolve and change among various organizations. The data science team is responsible for delivering complex projects where system analysis, software engineering, data engineering, and data science is used to deliver the final solution. To achieve all of this, the team does not only have a data scientist or a data analyst but also includes other roles like business analyst, data engineer or architect, and chief data officer. In this post, we will differentiate and discuss various job roles within a data science team, skill sets required and the compensation benefit for each one of them. For an in-depth understanding of data science teams, read the book, Managing Data Science by Kirill Dubovikov, which has interesting case studies on building successful data science teams. He also explores how the team can efficiently manage data science projects through the use of DevOps and ModelOps.  Now let's get into understanding individual data science roles and functions, but before that we take a look at the structure of the team.There are three basic team structures to match different stages of AI/ML adoption: IT centric team structure At times for companies hiring a data science team is not an option, and they have to leverage in-house talent. During such situations, they take advantage of the fully functional in-house IT department. The IT team manages functions like data preparation, training models, creating user interfaces, and model deployment within the corporate IT infrastructure. This approach is fairly limited, but it is made practical by MLaaS solutions. Environments like Microsoft Azure or Amazon Web Services (AWS) are equipped with approachable user interfaces to clean datasets, train models, evaluate them, and deploy. Microsoft Azure, for instance, supports its users with detailed documentation for a low entry threshold. The documentation helps in fast training and early deployment of models even without an expert data scientists on board. Integrated team structure Within the integrated structure, companies have a data science team which focuses on dataset preparation and model training, while IT specialists take charge of the interfaces and infrastructure for model deployment. Combining machine learning expertise with IT resource is the most viable option for constant and scalable machine learning operations. Unlike the IT centric approach, the integrated method requires having an experienced data scientist within the team. This approach ensures better operational flexibility in terms of available techniques. Additionally, the team leverages deeper understanding of machine learning tools and libraries – like TensorFlow or Theano which are specifically for researchers and data science experts. Specialized data science team Companies can also have an independent data science department to build an all-encompassing machine learning applications and frameworks. This approach entails the highest cost. All operations, from data cleaning and model training to building front-end interfaces, are handled by a dedicated data science team. It doesn't necessarily mean that all team members should have a data science background, but they should have technology background with certain service management skills. A specialized structure model aids in addressing complex data science tasks that include research, use of multiple ML models tailored to various aspects of decision-making, or multiple ML backed services. Today's most successful Silicon Valley tech operates with specialized data science teams. Additionally they are custom-built and wired for specific tasks to achieve different business goals. For example, the team structure at Airbnb is one of the most interesting use cases. Martin Daniel, a data scientist at Airbnb in this talk explains how the team emphasizes on having an experimentation-centric culture and apply machine learning rigorously to address unique product challenges. Job roles and responsibilities within data science team As discussed earlier, there are many roles within a data science team. As per Michael Hochster, Director of Data Science at Stitch Fix, there are two types of data scientists: Type A and Type B. Type A stands for analysis. Individuals involved in Type A are statisticians that make sense of data without necessarily having strong programming knowledge. Type A data scientists perform data cleaning, forecasting, modeling, visualization, etc. Type B stands for building. These individuals use data in production. They're good software engineers with strong programming knowledge and statistics background. They build recommendation systems, personalization use cases, etc. Though it is rare that one expert will fit into a single category. But understanding these data science functions can help make sense of the roles described further. Chief data officer/Chief analytics officer The chief data officer (CDO) role has been taking organizations by storm. A recent NewVantage Partners' Big Data Executive Survey 2018 found that 62.5% of Fortune 1000 business and technology decision-makers said their organization appointed a chief data officer. The role of chief data officer involves overseeing a range of data-related functions that may include data management, ensuring data quality and creating data strategy. He or she may also be responsible for data analytics and business intelligence, the process of drawing valuable insights from data. Even though chief data officer and chief analytics officer (CAO) are two distinct roles, it is often handled by the same person. Expert professionals and leaders in analytics also own the data strategy and how a company should treat its data. It does make sense as analytics provide insights and value to the data. Hence, with a CDO+CAO combination companies can take advantage of a good data strategy and proper data management without losing on quality. According to compensation analysis from PayScale, the median chief data officer salary is $177,405 per year, including bonuses and profit share, ranging from $118,427 to $313,791 annually. Skill sets required: Data science and analytics, programming skills, domain expertise, leadership and visionary abilities are required. Data analyst The data analyst role implies proper data collection and interpretation activities. The person in this job role will ensure that collected data is relevant and exhaustive while also interpreting the results of the data analysis. Some companies also require data analysts to have visualization skills to convert alienating numbers into tangible insights through graphics. As per Indeed, the average salary for a data analyst is $68,195 per year in the United States. Skill sets required: Programming languages like R, Python, JavaScript, C/C++, SQL. With this critical thinking, data visualization and presentation skills will be good to have. Data scientist Data scientists are data experts who have the technical skills to solve complex problems and the curiosity to explore what problems are needed to be solved. A data scientist is an individual who develops machine learning models to make predictions and is well versed in algorithm development and computer science. This person will also know the complete lifecycle of the model development. A data scientist requires large amounts of data to develop hypotheses, make inferences, and analyze customer and market trends. Basic responsibilities include gathering and analyzing data, using various types of analytics and reporting tools to detect patterns, trends and relationships in data sets. According to Glassdoor, the current U.S. average salary for a data scientist is $118,709. Skills set required: A data scientist will require knowledge of big data platforms and tools like  Seahorse powered by Apache Spark, JupyterLab, TensorFlow and MapReduce; and programming languages that include SQL, Python, Scala and Perl; and statistical computing languages, such as R. They should also have cloud computing capabilities and knowledge of various cloud platforms like AWS, Microsoft Azure etc.You can also read this post on how to ace a data science interview to know more. Machine learning engineer At times a data scientist is confused with machine learning engineers, but a machine learning engineer is a distinct role that involves different responsibilities. A machine learning engineer is someone who is responsible for combining software engineering and machine modeling skills. This person determines which model to use and what data should be used for each model. Probability and statistics are also their forte. Everything that goes into training, monitoring, and maintaining a model is the ML engineer's job. The average machine learning engineer's salary is $146,085 in the US, and is ranked No.1 on the Indeed's Best Jobs in 2019 list. Skill sets required: Machine learning engineers will be required to have expertise in computer science and programming languages like R, Python, Scala, Java etc. They would also be required to have probability techniques, data modelling and evaluation techniques. Data architects and data engineers The data architects and data engineers work in tandem to conceptualize, visualize, and build an enterprise data management framework. The data architect visualizes the complete framework to create a blueprint, which the data engineer can use to build a digital framework. The data engineering role has recently evolved from the traditional software-engineering field.  Recent enterprise data management experiments indicate that the data-focused software engineers are needed to work along with the data architects to build a strong data architecture. Average salary for a data architect in the US ranges from $1,22,000 to $1,29, 000 annually as per a recent LinkedIn survey. Skill sets required: A data architect or an engineer should have a keen interest and experience in programming languages frameworks like HTML5, RESTful services, Spark, Python, Hive, Kafka, and CSS etc. They should have the required knowledge and experience to handle database technologies such as PostgreSQL, MapReduce and MongoDB and visualization platforms such as; Tableau, Spotfire etc. Business analyst A business analyst (BA) basically handles Chief analytics officer's role but on the operational level. This implies converting business expectations into data analysis. If your core data scientist lacks domain expertise, a business analyst can bridge the gap. They are responsible for using data analytics to assess processes, determine requirements and deliver data-driven recommendations and reports to executives and stakeholders. BAs engage with business leaders and users to understand how data-driven changes will be implemented to processes, products, services, software and hardware. They further articulate these ideas and balance them against technologically feasible and financially reasonable. The average salary for a business analyst is $75,078 per year in the United States, as per Indeed. Skill sets required: Excellent domain and industry expertise will be required. With this good communication as well as data visualization skills and knowledge of business intelligence tools will be good to have. Data visualization engineer This specific role is not present in each of the data science teams as some of the responsibilities are realized by either a data analyst or a data architect. Hence, this role is only necessary for a specialized data science model. The role of a data visualization engineer involves having a solid understanding of UI development to create custom data visualization elements for your stakeholders. Regardless of the technology, successful data visualization engineers have to understand principles of design, both graphical and more generally user-centered design. As per Payscale, the average salary for a data visualization engineer is $98,264. Skill sets required: A data visualization engineer need to have rigorous knowledge of data visualization methods and be able to produce various charts and graphs to represent data. Additionally they must understand the fundamentals of design principles and visual display of information. To sum it up, a data science team has evolved to create a number of job roles and opportunities, but companies still face challenges in building up the team from scratch and find it hard to figure where to start from. If you are facing a similar dilemma, check out this book, Managing Data Science, written by Kirill Dubovikov. It covers concepts and methodologies to manage and deliver top-notch data science solutions, while also providing guidance on hiring, growing and sustaining a successful data science team. How to learn data science: from data mining to machine learning How to ace a data science interview Data science vs. machine learning: understanding the difference and what it means today 30 common data science terms explained 9 Data Science Myths Debunked
Read more
  • 0
  • 0
  • 11637