Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon

Tech Guides

852 Articles
article-image-bootstrap-vs-material-design-for-your-next-web-or-app-development-project
Guest Contributor
08 Oct 2019
8 min read
Save for later

Should you use Bootstrap or Material Design for your next web or app development project?

Guest Contributor
08 Oct 2019
8 min read
Superior user experience is becoming increasingly important for businesses as it helps them to engage users and boost brand loyalty. Front-end website and app development platforms, namely Bootstrap vs Material Design empower developers to create websites with a robust structure and advanced functionality, thereby delivering outstanding business solutions and unbeatable user experience. Both Twitter’s Bootstrap vs Material Design are used by developers to create functional and high-quality websites and apps. If you are an aspiring front-end developer, here’s a direct comparison between the two, so you can choose the one that’s better suited for your upcoming project. BootStrap Bootstrap is an open-source, intuitive, and powerful framework used for responsive mobile-first solutions on the web. For several years, Bootstrap has helped developers create splendid mobile-ready front-end websites. In fact, Bootstrap is the most popular  CSS framework as it’s easy to learn and offers a consistent design by using re-usable components. Let’s dive deeper into the pros and cons of Bootstrap. Pros High speed of development If you have limited time for the website or app development, Bootstrap is an ideal choice. It offers ready-made blocks of code that can get you started within no time. So, you don’t have to start coding from scratch. Bootstrap also provides ready-made themes, templates, and other resources that can be downloaded and customized to suit your needs, allowing you to create a unique website as quickly as possible. Bootstrap is mobile first Since July 1, 2019, Google started using mobile-friendliness as a critical ranking factor for all websites. This is because users prefer using sites that are compatible with the screen size of the device they are using. In other words, they prefer accessing responsive sites. Bootstrap is an ideal choice for responsive sites as it has an excellent fluid grid system and responsive utility classes that make the task at hand easy and quick. Enjoys  a strong community support Bootstrap has a huge number of resources available on its official website and enjoys immense support from the developers’ community. Consequently, it helps all developers fix issues promptly. At present, Bootstrap is being developed and maintained on GitHub by Mark Otto, currently Principal Design & Brand Architect at GitHub, with nearly 19 thousand commits and 1087 contributors. The team regularly releases updates to fix any new issues and improve the effectiveness of the framework. For instance, currently, the Bootstrap team is working on releasing version 4.3 that will drop jQuery for regular JavaScript. This is primarily because jQuery adds 30KB to the webpage size and is tricky to configure with bundlers like Webpack. Similarly, Flexbox is a new feature added to the Bootstrap 4 framework. In fact, Bootstrap version 4 is rich with features, such as a Flexbox-based grid, responsive sizing and floats, auto margins, vertical centering, and new spacing utilities. Further, you will find plenty of websites offering Bootstrap tutorials, a wide collection of themes, templates, plugins, and user interface kit that can be used as per your taste and nature of the project. Cons All Bootstrap sites look the same The Twitter team introduced Bootstrap with the objective of helping developers use a standardized interface to create websites within a short time. However, one of the major drawbacks of this framework is that all websites created using this framework are highly recognizable as Bootstrap sites. Open Airbnb, Twitter, Apple Music, or Lyft. They all look the same with bold headlines, rounded sans-serif fonts, and lots of negative space. Bootstrap sites can be heavy Bootstrap is notorious for adding unnecessary bloat to websites as the files generated are huge in size. This leads to longer loading time and battery draining issues. Further, if you delete them manually, it defeats the purpose of using the framework. So, if you use this popular front-end UI library in your project, make sure you pay extra attention to page weight and page speed. May not be suitable for simple websites Bootstrap may not be the right front-end framework for all types of websites, especially the ones that don’t need a full-fledged framework. This is because, Bootstrap’s theme packages are incredibly heavy with battery-draining scripts. Also, Bootstrap has CSS weighing in at 126KB and 29KB of JavaScript that can increase the site’s loading time. In such cases, Bootstrap alternatives, namely Foundation, Skeleton, Pure, and Semantic UI adaptable and lightweight frameworks that can meet your developmental needs and improve your site’s user-friendliness. Material Design When compared to Bootstrap vs Material Design is hard to customize and learn. However, this design language was introduced by Google in 2014 with the objective of enhancing Android app’s design and user interface. The language is quite popular among developers as it offers a quick and effective way for web development. It includes responsive transitions and animations, lighting and shadows effects, and grid-based layouts. When developing a website or app using Material Design, designers should play to its strengths but be wary of its cons. Let’s see why. Pros Offers numerous components  Material Design offers numerous components that provide a base design, guidelines, and templates. Developers can work on this to create a suitable website or application for the business. The Material Design concept offers the necessary information on how to use each component. Moreover, Material Design Lite is quite popular for its customization. Many designers are creating customized components to take their projects to the next level. Is compatible across various browsers Both Bootstrap vs Material Design have a sound browser compatibility as they are compatible across most browsers. Material Design supports Angular Material and React Material User Interface. It also uses the SASS preprocessor. Doesn’t require JavaScript frameworks Bootstrap completely depends on JavaScript frameworks. However, Material Design doesn’t need any JavaScript frameworks or libraries to design websites or apps. In fact, the platform provides a material design framework that allows developers to create innovative components such as cards and badges. Cons The animations and vibrant colors can be distracting Material Design extensively uses animated transitions and vibrant colors and images that help bring the interface to life. However, these animations can adversely affect the human brain’s ability to gather information. It is affiliated to Google Since Material Design is a Google-promoted framework, Android is its prominent adopter. Consequently, developers looking to create apps on a platform-independent UX may find it tough to work with Material Design. However, when Google introduced the language, it had broad vision for Material Design that encompasses many platforms, including iOS. The tech giant has several Google Material Design components for iOS that can be used to render interesting effects using a flexible header, standard material colors, typography, and sliding tabs Carries performance overhead Material Design extensively uses animations that carry a lot of overhead. For instance, effects like drop shadow, color fill, and transform/translate transitions can be jerky and unpleasant for regular users. Wrapping up: Should you use Bootstrap vs Material Design for your next web or app development project? Bootstrap is great for responsive, simple, and professional websites. It enjoys immense support and documentation, making it easy for developers to work with it. So, if you are working on a project that needs to be completed within a short time, opt for Bootstrap. The framework is mainly focused on creating responsive, functional, and high-quality websites and apps that enhance the user experience. Notice how these websites have used Bootstrap to build responsive and mobile-first sites. (Source: cssreel) (Source: Awwwards) Material Design, on the other hand, is specific as a design language and great for building websites that focus on appearance, innovative designs, and beautiful animations. You can use Material Design for your portfolio sites, for instance. The framework is pretty detailed and straightforward to use and helps you create websites with striking effects. Check out how these websites and apps use the customized themes, popups, and buttons of Material Design. (Source:  Nimbus 9) (Source: Digital Trends) What do you think? Which framework works better for you? Bootstrap vs Material Design. Let us know in the comments section below. Author Bio Gaurav Belani is a Senior SEO and Content Marketing Analyst at The 20 Media, a Content Marketing agency that specializes in data-driven SEO. He has more than seven years of experience in Digital Marketing and along with that loves to read and write about AI, Machine Learning, Data Science and much more about the emerging technologies. In his spare time, he enjoys watching movies and listening to music. Connect with him on Twitter and Linkedin. Material-UI v4 releases with CSS specificity, Classes boilerplate, migration to Typescript and more Warp: Rust’s new web framework Learn how to Bootstrap a Spring application [Tutorial] Bootstrap 5 to replace jQuery with vanilla JavaScript How to use Bootstrap grid system for responsive website design?  
Read more
  • 0
  • 0
  • 25740

article-image-trick-question-what-devops
Michael Herndon
10 Dec 2015
7 min read
Save for later

Trick Question: What is DevOps?

Michael Herndon
10 Dec 2015
7 min read
An issue that plagues DevOps is the lack of a clearly defined definition. A Google search displays results that state that DevOps is empathy, culture, or a movement. There are also derivations of DevOps like ChatOps and HugOps. A lot of speakers mentions DEVOPS but no-one seemed to have a widely agreed definition of what DEVOPS actually means. — Stephen Booth (@stephenbooth_uk) November 19, 2015 Proposed Definition of DevOps: "Getting more done with fewer meetings." — DevOps Research (@devopsresearch) October 12, 2015 The real head-scratchers are the number of job postings for DevOps Engineers and the number of certifications for DevOps that are popping up all over the web. The job title Software Engineer is contentious within the technology community, so the job title DevOps engineer is just begging to take pointless debates to a new level. How do you create a curriculum and certification course that has any significant value on an unclear subject? For a methodology that has an emphasis on people, empathy, communications, it falls woefully short heeding its own advice and values. On any given day, you can see the meaning debated on blog posts and tweets. My current understanding of DevOps and why it exists DevOps is an extension of the agile methodology that is hyper-focused on bringing customers extraordinary value without compromising creativity (development) or stability (operations). DevOps is from the two merged worlds of Development and Operations. Operations in this context include all aspects of IT such as system administration, maintenance, etc. Creation and stability are naturally at odds with each other. The ripple effect is a good way to explain how these two concepts have friction. Stability wants to keep the pond from becoming turbulent and causing harm. Creation leads to change which can act as a random rock thrown into the water sending ripples throughout the whole pond, leading to undesired side effects that causes harm to the whole ecosystem. DevOps seeks to leverage the momentum of controlled ripples to bring about effective change without causing enough turbulence to impact the whole pond negatively. The natural friction between these two needs often drives a wedge between development and operations. Operations worry that a product update may include broken functionality that customers have come to depend on, and developers worry that sorely needed new features may not make it to customers because of operation's resistance to change. Instead of taking polarizing positions, DevOps is focused on blending those two positions into a force that effectively provides value to the customer without compromising the creativity and stability that a product or service needs to compete in an ever-evolving world. Why is a clear singular meaning needed for DevOps? The understanding of a meaning is an important part of sending a message. If an unclear word is used to send a message, and then the word risks becoming noise and the message risks becoming uninterpreted or misinterpreted. Without a clear singular meaning, you risk losing the message that you want people to hear. In technology, I see messages get drowned in noise all the time. The problem of multiple meanings In communication's theory, noise is anything that interferes with understanding. Noise is more than just the sounds of static, loud music, or machinery. Creating noise can be simple as using obscure words to explain a topic or providing an unclear definition that muddles the comprehension of a given subject. DevOps suffers from too much noise that increases people's uncertainty of the word. After a reading a few posts on DevOps, each one with its declaration of the essence of DevOps, DevOps becomes confusing. DevOps is empathy! DevOps is culture! DevOps is a movement! Because of noise, DevOps seems to stands for multiple ideas plus agile operations without setting any prioritization or definitive context. OK, so which is it? Is it one of those or is it all of them? Which idea is the most important? Furthermore, these ideas can cause friction as not everyone shares the same view on these topics. DevOps is supposed to reduce friction between naturally opposing groups within a business, not create more of it. People can get behind making more money and working fewer hours by strategically providing customers with extraordinary value. Once you start going into things that people can consider personal, people can start to feel excluded for not wanting to mix the two topics, and thus you diminish the reach of the message that you once had. When writing about empathy, one should practice empathy and consider that not everyone wants to be emotionally vulnerable in the workplace. Forcing people to be emotionally vulnerable or fit a certain mold for culture can cause people to shut down. I would argue that all businesses need people that are capable of empathy to argue on the behalf of the customer and other employees, but it's not a requirement that all employees are empathetic. At the other end of the spectrum, you need people that are not empathetic to make hard and calculating decisions. One last point on empathy, I've seen people write on empathy and users in a way that should have been about the psychology of users or something else entirely. Empathy is strictly understanding and sharing the feelings of another. It doesn't cover physical needs or intellectual ones, just the emotional. So another issue with crossing multiple topics into one definition, is that you risk damaging two topics at once. This doesn't mean people should avoid writing about these topics. Each topic stands on its own merit. Each topic deserves its own slate. Empathy and culture are causes that any business can take up without adopting DevOps. They are worth writing about, just make sure that you don't mix messages to avoid confusing people. Stick to one message. Write to the lowest common denominator Another aspect of noise is using wording that is a barrier to understanding a given definition. DevOps is the practice of operations and development engineers participating together in the entire service lifecycle, from design through the development process to production support. - the agile admin People that are coming from outside the world of agile and development are going to have a hard time piecing together the meaning of a definition like that. What my mind sees when reading something like that is same sound that a teacher in Charlie Brown makes. Blah, Blah Blah. blah! Be kind to your readers. When you want them to remember something, make it easy to understand and memorable. Write to appeal to all personality styles In marketing, you're taught to write to appeal to 4 personality styles: driver, analytical, expressive, and amiable. Getting people to work together in the workplace also requires appealing to these four personality types. There is a need for a single definition of DevOps that appeals to the 4 personality styles or at the very least, refrains from being a barrier to entry. If a person needs to persuade a person with a driver type of personality, but the definition includes language that invokes an automatic no, then it puts people who want to use DevOps at a disadvantage. Give people every advantage you can for them to adopt DevOps. Its time for a definition for DevOps One of the main points of communication is to reduce uncertainity. Its hypocritical to introduce a word without a definite meaning that touchs upon importance of communication and then expect people to take it seriously when the definition constantly changes. Its time that we have a singular definition for DevOps so that people use it for the hiring process, certifications, and that market it can do so without the risk of the message being lost or co-opted into something that is not. About the author Michael Herndon is the head of DevOps at Solovis, creator of badmishka.co, and all around mischievous nerdy guy.
Read more
  • 0
  • 0
  • 25537

article-image-newsql-what-hype-about
Amey Varangaonkar
06 Nov 2017
6 min read
Save for later

NewSQL: What the hype is all about

Amey Varangaonkar
06 Nov 2017
6 min read
First, there was data. Data became database. Then came SQL. Next came NoSQL. And now comes NewSQL. NewSQL Origins For decades, relational database or SQL was the reigning data management standard in enterprises all over the world. With the advent of Big Data and cloud-based storage rose the need for a faster, more flexible and scalable data management system, which didn’t necessarily comply with the SQL standards of ACID compliance. This was popularly dubbed as NoSQL, and databases like MongoDB, Neo4j, and others gained prominence in no time. We can attribute the emergence and eventual adoption of NoSQL databases to a couple of very important factors. The high costs and lack of flexibility of the traditional relational databases drove many SQL users away. Also, NoSQL databases are mostly open source, and their enterprise versions are comparatively cheaper too. They are schema-less meaning they can be used to manage unstructured data effectively. In addition, they can scale well horizontally - i.e. you could add more machines to increase computing power and use it to handle high volumes of data. All these features of NoSQL come with an important tradeoff, however - these systems can’t simultaneously ensure total consistency. Of late, there has been a rise in another type of database systems, with the aim to combine ‘the best of both the worlds’. Popularly dubbed as ‘NewSQL’, this system promises to combine the relational data model of SQL and the scalability and speed of NoSQL. NewSQL - The dark horse in the databases race NewSQL is ‘SQL on Steroids’, say many. This is mainly because all NewSQL systems start with the relational data model and the SQL query language, but also incorporate the features that have led to the rise of NoSQL - addressing the issues of scalability, flexibility, and high performance. They offer the assurance of ACID transactions like in the relational models. However, what makes them really unique is that they allow the horizontal scaling functionality of NoSQL, and can process large volumes of data with high performance and reliability. This is why businesses really like the concept of NewSQL - the performance of NoSQL and the reliability and consistency of the SQL model, all packed in one. To understand what the hype surrounding NewSQL is all about, it’s worth comparing NewSQL database systems with the traditional SQL and NoSQL database systems, and see where they stand out: Characteristic Relational (SQL) NoSQL NewSQL ACID compliance Yes No Yes OLTP/OLAP support Yes No Yes Rigid Schema Structure Yes No In some cases Support for unstructured data No Yes In some cases Performance with large data Moderate Fast Very fast Performance overhead Huge Moderate Minimal Support from Community Very high High Low   As we can see from the table above, NewSQL really comes through as the best when you’re dealing with larger datasets with a desire to lower performance overheads. To give you a practical example, consider an organization that has to work with a large number of short transactions, access a limited amount of data, but executes those queries repeatedly. For such organizations, a NewSQL database system would be a perfect fit. These features are leading to the gradual growth of NewSQL systems. However, it will take some time for more industries to adopt them. Not all NewSQL databases are created equal Today, one has a host of NewSQL solutions to choose from. Some popular solutions are Clustrix, MemSQL, VoltDB and CockroachDB.  Cloud Spanner, the latest NewSQL offering by Google, became generally available in February 2017 - indicating Google’s interest in the NewSQL domain and the value a NewSQL database can offer to their existing cloud offerings. It is important to understand that there are significant differences among these various NewSQL solutions. As such you should choose a NewSQL solution carefully after evaluating your organization’s data requirements and problems. As this article on Dataconomy points out, while some databases handle transactional workloads well, they do not offer the benefit of native clustering - SAP HANA is one such example. NuoDB focuses on cloud deployments, but its overall throughput is found to be rather sub-par. MemSQL is a suitable choice when it comes to clustered analytics but falls short when it comes to consistency. Thus, the choice of the database purely depends on the task you want to do, and what trade-offs you are ready to allow without letting it affect your workflow too much. DBAs and Programmers in the NewSQL world Regardless of which database system an enterprise adopts, the role of DBAs will continue to be important going forward. Core database administration and maintenance tasks such as backup, recovery, replication, etc. will need to be taken care of. The major challenge for the NewSQL DBAs will be in choosing and then customizing the right database solution that fits the organizational requirements. Some degree of capacity planning and overall database administration skills might also have to be recalibrated. Likewise, NewSQL database programmers may find themselves dealing with data manipulation and querying tasks similar to those faced while working with traditional database systems. But NewSQL programmers will be doing these tasks at a much larger, or shall we say, at a more ‘distributed’ scale. In conclusion When it comes to solving a particular problem related to data management, it’s often said that 80% of the solution comes down to selecting the right tool, and 20% is about understanding the problem at hand! In order to choose the right database system for your organization, you must ask yourself these two questions: What is the nature of the data you will work with? What are you willing to trade-off? In other words, how important are factors such as the scalability and performance of the database system? For example, if you primarily work with mostly transactional data with a priority on high performance and high scalability, then NewSQL databases might fit your bill just perfectly. If you’re going to work with volatile data, NewSQL might help you there as well, however, there are better NoSQL solutions to tackle your data problem. As we have seen earlier, NewSQL databases have been designed to combine the advantages and power of both relational and NoSQL systems. It is important to know that NewSQL databases are not designed to replace either NoSQL or SQL relational models. They are rather intentionally-built alternatives for data processing, which mask the flaws and shortcomings of both relational and nonrelational database systems. The ultimate goal of NewSQL is to deliver a high performance, highly available solution to handle modern data, without compromising on data consistency and high-speed transaction capabilities.
Read more
  • 0
  • 0
  • 25280
Banner background image

article-image-python-data-stack
Akram Hussain
31 Oct 2014
3 min read
Save for later

Python Data Stack

Akram Hussain
31 Oct 2014
3 min read
The Python programming language has grown significantly in popularity and importance, both as a general programming language and as one of the most advanced providers of data science tools. There are 6 key libraries every Python analyst should be aware of, and they are: 1 - NumPY NumPY: Also known as Numerical Python, NumPY is an open source Python library used for scientific computing. NumPy gives both speed and higher productivity using arrays and metrics. This basically means it's super useful when analyzing basic mathematical data and calculations. This was one of the first libraries to push the boundaries for Python in big data. The benefit of using something like NumPY is that it takes care of all your mathematical problems with useful functions that are cleaner and faster to write than normal Python code. This is all thanks to its similarities with the C language. 2 - SciPY SciPY: Also known as Scientific Python, is built on top of NumPy. SciPy takes scientific computing to another level. It’s an advanced form of NumPy and allows users to carry out functions such as differential equation solvers, special functions, optimizers, and integrations. SciPY can be viewed as a library that saves time and has predefined complex algorithms that are fast and efficient. However, there are a plethora of SciPY tools that might confuse users more than help them. 3 - Pandas Pandas is a key data manipulation and analysis library in Python. Pandas strengths lie in its ability to provide rich data functions that work amazingly well with structured data. There have been a lot of comparisons between pandas and R packages due to their similarities in data analysis, but the general consensus is that it is very easy for anyone using R to migrate to pandas as it supposedly executes the best features of R and Python programming all in one. 4 - Matplotlib Matplotlib is a visualization powerhouse for Python programming, and it offers a large library of customizable tools to help visualize complex datasets. Providing appealing visuals is vital in the fields of research and data analysis. Python’s 2D plotting library is used to produce plots and make them interactive with just a few lines of code. The plotting library additionally offers a range of graphs including histograms, bar charts, error charts, scatter plots, and much more. 5 - scikit-learn scikit-learn is Python’s most comprehensive machine learning library and is built on top of NumPy and SciPy. One of the advantages of scikit-learn is the all in one resource approach it takes, which contains various tools to carry out machine learning tasks, such as supervised and unsupervised learning. 6 - IPython IPython makes life easier for Python developers working with data. It’s a great interactive web notebook that provides an environment for exploration with prewritten Python programs and equations. The ultimate goal behind IPython is improved efficiency thanks to high performance, by allowing scientific computation and data analysis to happen concurrently using multiple third-party libraries. Continue learning Python with a fun (and potentially lucrative!) way to use decision trees. Read on to find out more.
Read more
  • 0
  • 0
  • 25273

article-image-why-should-enterprises-use-splunk
Sunith Shetty
25 Jul 2018
4 min read
Save for later

Why should enterprises use Splunk?

Sunith Shetty
25 Jul 2018
4 min read
Splunk is a multinational software company that offers its core platform, Splunk Enterprise, as well as many related offerings built on the Splunk platform. The platform helps a wide variety of organizational personas, such as analysts, operators, developers, testers, managers, and executives. They get analytical insights from machine-created data. It collects, stores, and provides powerful analytical capabilities, enabling organizations to act on often powerful insights derived from this data. The Splunk Enterprise platform was built with IT operations in mind. When companies had IT infrastructure problems, troubleshooting and solving problems was immensely difficult, complicated, and manual. It was built to collect and make log files from IT systems searchable and accessible. It is commonly used for information security and development operations, as well as more advanced use cases for custom machines, Internet of Things, and mobile devices. Most organizations will start using Splunk in one of three areas: IT operations management, information security, or development operations (DevOps). In today's post, we will understand the thoughts, concepts, and ideas to apply Splunk to an organization level. This article is an excerpt from a book written by J-P Contreras, Erickson Delgado and Betsy Page Sigman titled Splunk 7 Essentials, Third Edition. IT operations IT operations have moved from predominantly being a cost center to also being a revenue center. Today, many of the world's oldest companies also make money based on IT services and/or systems. As a result, the delivery of these IT services must be monitored and, ideally, proactively remedied before failures occur. Ensuring that hardware such as servers, storage, and network devices are functioning properly via their log data is important. Organizations can also log and monitor mobile and browser-based software applications for any issues from software. Ultimately, organizations will want to correlate these sets of data together to get a complete picture of IT Health. In this regard, Splunk takes the expertise accumulated over the years and offers a paid-for application known as IT Server Intelligence (ITSI) to help give companies a framework for tackling large IT environments. Complicating matters for many traditional organizations is the use of Cloud computing technologies, which now drive log captured from both internally and externally hosted systems. Cybersecurity With the relentless focus in today's world on cybersecurity, there is a good chance your organization will need a tool such as Splunk to address a wide variety of Information Security needs as well. It acts as a log data consolidation and reporting engine, capturing essential security-related log data from devices and software, such as vulnerability scanners, phishing prevention, firewalls, and user management and behavior, just to name a few. Companies need to ensure they are protected from external as well as internal threats, and as a result offer the paid-for applications enterprise security and User behavior analytics (UBA). Similar to ITSI, these applications deliver frameworks to help companies meet their specific requirements in these areas. In addition to cyber-security to protect the business, often companies will have to comply with, and audit against, specific security standards, which can be industry-related, such as PCI compliance of financial transactions; customer-related, such as National Institute of Standards and Technologies (NIST) requirements in working with the the US government; or data privacy-related, such as the Health Insurance Portability and Accountability Act (HIPAA) or the European Union's General Data Protection Regulation (GPDR). Software development and support operations Commonly referred to as DevOps, Splunk's ability to ingest and correlate data from many sources solves many challenges faced in software development, testing, and release cycles. Using Splunk will help teams provide higher quality software more efficiently. Then, with the controls into the software in place, it will provide visibility into released software, its use and user behavior changes, intended or not. This set of use cases is particularly applicable to organizations that develop their own software. Internet of Things Many organizations today are looking to build upon the converging trends in computing, mobility and wireless communications and data to capture data from more and more devices. Examples can include data captured from sensors placed on machinery such as wind turbines, trains, sensors, heating, and cooling systems. These sensors provide access to the data they capture in standard formats such as JavaScript Object Notation (JSON) through application programming interfaces (APIs). To summarize, we saw how Splunk can be used at an organizational level for IT operations, cybersecurity, software development and support and the IoTs. To know more about how Splunk can be used to make informed decisions in areas such as IT operations, information security, and the Internet of Things., do checkout this book Splunk 7 Essentials, Third Edition. Create a data model in Splunk to enable interactive reports and dashboards Splunk leverages AI in its monitoring tools Splunk Industrial Asset Intelligence (Splunk IAI) targets Industrial IoT marketplace
Read more
  • 0
  • 0
  • 24978

article-image-8-ways-artificial-intelligence-can-improve-devops
Prasad Ramesh
01 Sep 2018
6 min read
Save for later

8 ways Artificial Intelligence can improve DevOps

Prasad Ramesh
01 Sep 2018
6 min read
DevOps combines development and operations in an agile manner. ITOps refers to network infrastructure, computer operations, and device management. AIOps is artificial intelligence applied to ITOps, a term coined by Gartner. Makes us wonder what AI applied to DevOps would look like. Currently, there are some problem areas in DevOps that mainly revolve around data. Namely, accessing the large pool of data, taking actions on it, managing alerts etc. Moreover, there are errors caused by human intervention. AI works heavily with data and can help improve DevOps in numerous ways. Before we get into how AI can improve DevOps, let’s take a look at some of the problem areas in DevOps today. The trouble with DevOps Human errors: When testing or deployment is performed manually and there is an error, it is hard to repeat and fix. Many a time, the software development is outsourced in companies. In such cases, there is lack of coordination between the dev and ops teams. Environment inconsistency: Software functionality breaks when the code moves to different environments as each environment has different configurations. Teams can run around wasting a lot of time due to bugs when the software works fine on one environment but not on the other. Change management: Many companies have change management processes well in place, but they are outdated for DevOps. The time taken for reviews, passing a new module etc is manual and proves to be a bottleneck. Changes happen frequently in DevOps and the functioning suffers due to old processes. Monitoring: Monitoring is key to ensure smooth functioning in Agile. Many companies do not have the expertise to monitor the pipeline and infrastructure. Moreover monitoring only the infrastructure is not enough, there also needs to be monitoring of application performance, solutions need to be logged and analytics need to be tracked. Now let’s take a look at 8 ways AI can improve DevOps given the above context. 1. Better data access One of the most critical issues faced by DevOps teams is the lack of unregulated access to data. There is also a large amount of data, while the teams rarely view all of the data and focus on the outliers. The outliers only work as an indicator but do not give robust information. Artificial intelligence can compile and organize data from multiple sources for repeated use. Organized data is much easier to access and understand than heaps of raw data. This will help in predictive analysis and eventually a better decision making process. This is very important and enables many other ways listed below. 2. Superior implementation efficiency Artificially intelligent systems can work with minimal or no human intervention. Currently, a rules-based environment managed by humans is followed in DevOps teams. AI can transform this into self governed systems to greatly improve operational efficiency. There are limitations to the volume and complexity of analysis a human can perform. Given the large volumes of data to be analyzed and processed, AI systems being good at it, can set optimal rules to maximize operational efficiencies. 3. Root cause analysis Conducting root cause analysis is very important to fix an issue permanently. Not getting to the root cause allows for the cause to persist and affect other areas further down the line. Often, engineers don’t investigate failures in depth and are more focused on getting the release out. This is not surprising given the limited amount of time they have to work with. If fixing a superficial area gets things working, the root cause is not found. AI can take all data into account and see patterns between activity and cause to find the root cause of failure. 4 Automation Complete automation is a problem in DevOps, many tasks in DevOps are routine and need to be done by humans. An AI model can automate these repeatable tasks and speed up the process significantly. A well-trained model increases the scope of complexity of the tasks that can be automated by machines. AI can help achieve least human intervention so that developers can focus on more complex interactive problems. Complete automation also allows the errors to be reproduced and fixed promptly. 5 Reduce Operational Complexity AI can be used to simplify operations by providing a unified view. An engineer can view all the alerts and relevant data produced by the tools in a single place. This improves the current scenario where engineers have to switch between different tools to manually analyze and correlate data. Alert prioritization, root cause analysis, evaluating unusual behavior are complex time consuming tasks that depend on data. An organized singular view can greatly benefit in looking up data when required. “AI and machine learning makes it possible to get a high-level view of the tool-chain, but at the same time zoom in when it is required.” -SignifAI 6 Predicting failures A critical failure in a particular tool/area in DevOps can cripple the process and delay cycles. With enough data, machine learning models can predict when an error can occur. This goes beyond simple predictions. If an occurred fault is known to produce certain readings, AI can read patterns and predict the signs failure. AI can see indicators that humans may not be able to. As such early failure prediction and notification enable the team to fix it before it can affect the software development life cycle (SDLC). 7 Optimizing a specific metric AI can work towards solutions where the uptime is maximized. An adaptive machine learning system can learn how the system works and improve it. Improving could mean tweaking a specific metric in the workflow for optimized performance. Configurations can be changed by AI for optimal performance as required during different production phases. Real-time analysis plays a big part in this. 8 Managing Alerts DevOps systems can be flooded with alerts which are hard for humans to read and act upon. AI can analyze these alerts in real-time and categorize them. Assigning priority to alerts helps teams towards work on fixing them rather than going through a long list of alerts. The alerts can simply be tagged by a common ID for specific areas or AI can be trained for classifying good and bad alerts. Prioritizing alerts in such a way that flaws are shown first to be fixed will help smooth functioning. Conclusion As we saw, most of these areas depend heavily on data. So getting the system right to enhance data accessibility is the first step to take. Predictions work better when data is organized, performing root cause analysis is also easier. Automation can repeat mundane tasks and allow engineers to focus on more interactive problems that machines cannot handle. With machine learning, the overall operation efficiency, simplicity, and speed can be improved for smooth functioning of DevOps teams. Why Agile, DevOps and Continuous Integration are here to stay: Interview with Nikhil Pathania, DevOps practitioner Top 7 DevOps tools in 2018 GitLab’s new DevOps solution
Read more
  • 0
  • 0
  • 24407
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-deploy-self-service-business-intelligence-qlik-sense
Amey Varangaonkar
31 May 2018
7 min read
Save for later

Best practices for deploying self-service BI with Qlik Sense

Amey Varangaonkar
31 May 2018
7 min read
As part of a successful deployment of Qlik Sense, it is important IT recognizes self-service Business Intelligence to have its own dynamics and adoption rules. The various use cases and subsequent user groups thus need to be assessed and captured. Governance should always be present but power users should never get the feeling that they are restricted. Once they are won over, the rest of the traction and the adoption of other user types is very easy. In this article, we will look at the most important points to keep in mind while deploying self-service with Qlik Sense. The following excerpt is taken from the book Mastering Qlik Sense, authored by Martin Mahler and Juan Ignacio Vitantonio. This book demonstrates useful techniques to design useful and highly profitable Business Intelligence solutions using Qlik Sense. Here's the list of points to be kept in mind: Qlik Sense is not QlikView Not even nearly. The biggest challenge and fallacy is that the organization was sold, by Qlik or someone else, just the next version of the tool. It did not help at all that Qlik itself was working for years on Qlik Sense under the initial product name Qlik.Next. Whatever you are being told, however, it is being sold to you, Qlik Sense is at best the cousin of QlikView. Same family, but no blood relation. Thinking otherwise sets the wrong expectation so the business gives the wrong message to stakeholders and does not raise awareness to IT that self-service BI cannot be deployed in the same fashion as guided analytics, QlikView in this case. Disappointment is imminent when stakeholders realize Qlik Sense cannot replicate their QlikView dashboards. Simply installing Qlik Sense does not create a self-service BI environment Installing Qlik Sense and giving users access to the tool is a start but there is more to it than simply installing it. The infrastructure requires design and planning, data quality processing, data collection, and determining who intends to use the platform to consume what type of data. If data is not available and accessible to the user, data analytics serve no purpose. Make sure a data warehouse or similar is in place and the business has a use case for self-service data analytics. A good indicator for this is when the business or project works with a lot of data, and there are business users who have lots of Excel spreadsheets lying around analyzing it in different ways. That’s your best case candidate for Qlik Sense. IT to monitor Qlik Sense environment rather control IT needs to unlearn to learn new things and the same applies when it comes to deploying self-service. Create a framework with guidelines and principles and monitor that users are following it, rather than limiting them in their capabilities. This framework needs to have the input of the users as well and to be elastic. Also, not many IT professionals agree with giving away too much power to the user in the development process, believing this leads to chaos and anarchy. While the risk is there, this fear needs to be overcome. Users love data analytics, and they are keen to get the help of IT to create the most valuable dashboard possible and ensure it will be well received by a wide audience. Identifying key users and user groups is crucial For a strong adoption of the tool, IT needs to prepare the environment and identify the key power users in the organization and to win them over to using the technology. It is important they are intensively supported, especially in the beginning, and they are allowed to drive how the technology should be used rather than having principles imposed on them. Governance should always be present but power users should never get the feeling they are restricted by it. Because once they are won over, the rest of the traction and the adoption of other user types is very easy. Qlik Sense sells well–do a lot of demos Data analytics, compelling visualizations, and the interactivity of Qlik Sense is something almost everyone is interested in. The business wants to see its own data aggregated and distilled in a cool and glossy dashboard. Utilize the momentum and do as many demos as you can to win advocates of the technology and promote a consciousness of becoming a data-driven culture in the organization. Even the simplest Qlik Sense dashboards amaze people and boost their creativity for use cases where data analytics in their area could apply and create value. Promote collaboration Sharing is caring. This not only applies to insights, which naturally are shared with the excitement of having found out something new and valuable, but also to how the new insight has been derived. People keep their secrets on the approach and methodology to themselves, but this is counterproductive. It is important that applications, visualizations, and dashboards created with Qlik Sense are shared and demonstrated to other Qlik Sense users as frequently as possible. This not only promotes a data-driven culture but also encourages the collaboration of users and teams across various business functions, which would not have happened otherwise. They could either be sharing knowledge, tips, and tricks or even realizing they look at the same slices of data and could create additional value by connecting them together. Market the success of Qlik Sense within the organization If Qlik Sense has had a successful achievement in a project, tell others about it. Create a success story and propose doing demos of the dashboard and its analytics. IT has been historically very bad in promoting their work, which is counterproductive. Data analytics creates value and there is nothing embarrassing about boasting about its success; as Muhammad Ali suggested, it’s not bragging if it’s true. Introduce guidelines on design and terminology Avoiding the pitfalls of having multiple different-looking dashboards by promoting a consistent branding look across all Qlik Sense dashboards and applications, including terminology and best practices. Ensure the document is easily accessible to all users. Also, create predesigned templates with some sample sheets so the users duplicate them and modify them to their liking and extend them, applying the same design. Protect less experienced users from complexities Don’t overwhelm users if they have never developed in their life. Approach less technically savvy users in a different way by providing them with sample data and sample templates, including a library of predefined visualizations, dimensions, or measures (so-called Master Key Items). Be aware that what is intuitive to Qlik professionals or power users is not necessarily intuitive to other users – be patient and appreciative of their feedback, and try to understand how a typical business user might think. For a strong adoption of the tool, IT needs to prepare the environment and identify the key power users in the organization and win them over to using the technology. It is important they are intensively supported, especially in the beginning, and they are allowed to drive how the technology should be used rather than having principles imposed on them. If you found the excerpt useful, make sure you check out the book Mastering Qlik Sense to learn more of these techniques on efficient Business Intelligence using Qlik Sense. Read more How Qlik Sense is driving self-service Business Intelligence Overview of a Qlik Sense® Application’s Life Cycle What we learned from Qlik Qonnections 2018
Read more
  • 0
  • 0
  • 24321

article-image-write-python-code-or-pythonic-code
Aaron Lazar
08 Aug 2018
5 min read
Save for later

Do you write Python Code or Pythonic Code?

Aaron Lazar
08 Aug 2018
5 min read
If you’re new to Programming, and Python in particular, you might have heard the term Pythonic being brought up at tech conferences, meetups and even at your own office. You might have also wondered why the term and whether they’re just talking about writing Python code. Here we’re going to understand what the term Pythonic means and why you should be interested in learning how to not just write Python code, rather write Pythonic code. What does Pythonic mean? When people talk about pythonic code, they mean that the code uses Python idioms well, that it’s natural or displays fluency in the language. In other words, it means the most widely adopted idioms that are adopted by the Python community. If someone said you are writing un-pythonic code, they might actually mean that you are attempting to write Java/C++ code in Python, disregarding the Python idioms and performing a rough transcription rather than an idiomatic translation from the other language. Okay, now that you have a theoretical idea of what Pythonic (and unpythonic) means, let’s have a look at some Pythonic code in practice. Writing Pythonic Code Before we get into some examples, you might be wondering if there’s a defined way/method of writing Pythonic code. Well, there is, and it’s called PEP 8. It’s the official style guide for Python. Example #1 x=[1, 2, 3, 4, 5, 6] result = [] for idx in range(len(x)); result.append(x[idx] * 2) result Output: [2, 4, 6, 8, 10, 12] Consider the above code, where you’re trying to multiply some elements, “x” by 2. So, what we did here was, we created an empty list to store the results. We would then append the solution of the computation into the result. The result now contains a function which is 2 multiplied by each of the elements. Now, if you were to write the same code in a Pythonic way, you might want to simply use list comprehensions. Here’s how: x=[1, 2, 3, 4, 5, 6] [(element * 2) for element in x] Output: [2, 4, 6, 8, 10] You might have noticed, we skipped the entire for loop! Example #2 Let’s make the previous example a bit more complex, and place a condition that the elements should be multiplied by 2 only if they are even. x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] result = [] for idx in range(len(x)); if x[idx] % 2 == 0; result.append(x[idx] * 2) else; result.append(x[idx]) result Output: [1, 4, 3, 8, 5, 12, 7, 16, 9, 20] We’ve actually created an if else statement to solve this problem, but there is a simpler way of doing things the Pythonic way. [(element * 2 if element % 2 == 0 else element) for element in x] Output: [1, 4, 3, 8, 5, 12, 7, 16, 9, 20] If you notice what we’ve done here, apart from skipping multiple lines of code, is that we used the if-else statement in the same sentence. Now, if you wanted to perform filtering, you could do this: x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [element * 2 for element in x if element % 2 == 0] Output: [4, 8, 12, 16, 20] What we’ve done here is put the if statement after the for declaration, and Voila! We’ve achieved filtering. If you’re using a nice IDE like Jupyter Notebooks or PyCharm, they will help you format your code as per the PEP 8 suggestions. Why should you write Pythonic code? Well firstly, you’re saving loads of time writing humongous piles of cowdung code, so you’re obviously becoming a smarter and more productive programmer. Python is a pretty slow language, and when you’re trying to do something in Python, which is acquired from another language like Java or C++, you’re going to worsen things. With idiomatic, Pythonic code, you’re improving the speed of your programs. Moreover, idiomatic code is far easier to comprehend and understand for other developers who are working on the same code. It helps a great deal when you’re trying to refactor someone else’s code. Fearing Pythonic idioms Well, I don’t mean the idioms themselves are scary. Rather, quite a few developers and organisations have begun discriminating on the basis of whether someone can or cannot write Pythonic code. This is wrong, because, at the end of the day, though the PEP 8 exists, the idea of the term Pythonic is different for different people. To some it might mean picking up a new style guide and improving the way you code. To others, it might mean being succinct and not repeating themselves. It’s time we stopped judging people on whether they can or can’t write Pythonic code and instead, we should appreciate when someone is able to present readable, easily maintainable and succinct code. If you find them writing a bit of clumsy code, you can choose to talk to them about improving their design considerations. And the world will be a better place! If you’re interested in learning how to write more succinct and concise Python code, check out these resources: Learning Python Design Patterns - Second Edition Python Design Patterns [Video] Python Tips, Tricks and Techniques [Video]    
Read more
  • 0
  • 2
  • 23933

article-image-self-service-business-intelligence-qlik-sense-users
Amey Varangaonkar
29 May 2018
7 min read
Save for later

Four self-service business intelligence user types in Qlik Sense

Amey Varangaonkar
29 May 2018
7 min read
With the introduction of self-service to BI, there is segmentation at various levels and breaths on how self-service is conducted and to what extent. There are, quite frankly, different user types that differ from each other in level of interest, technical expertise, and the way in which they consume data. While each user will almost be unique in the way they use self-service, the user base can be divided into four different groups. In this article, we take a look at the four types of users in self-service business intelligence model. The following excerpt is taken from the book Mastering Qlik Sense, authored by Martin Mahler and Juan Ignacio Vitantonio. This book presents expert techniques to design and deploy enterprise-grade Business Intelligence solutions for your business, by leveraging the power of Qlik Sense. Power Users or Data Champions Power users are the most tech-savvy business users, who show a great interest in self-service BI. They produce and build dashboards themselves and know how to load data and process it to create a logical data model. They tend to be self-learning and carry a hybrid set of skills, usually a mixture of business knowledge and some advanced technical skills. This user group is often frustrated with existing reporting or BI solutions and finds IT inadequate in delivering the same. As a result, especially in the past, they take away data dumps from IT solutions and create their own dashboards in Excel, using advanced skills such as VBA, Visual Basic for Applications. They generally like to participate in the development process but have been unable to do so due to governance rules and a strict old-school separation of IT from the business. Self-service BI is addressing this group in particular, and identifying those users is key in reaching adoption within an organization. Within an established self-service environment, power users generally participate in committees revolving around the technical environments and represent the business interest. They also develop the bulk of the first versions of the apps, which, as part of a naturally evolving process, are then handed over to more experienced IT for them to be polished and optimized. Power users advocate the self-service BI technology and often not only demo the insights and information they achieved to extract from their data, but also the efficiency and timeliness of doing so. At the same time, they also serve as the first point of contact for other users and consumers when it comes to questions about their apps and dashboards. Sometimes they also participate in a technical advisory capacity on whether other projects are feasible to be implemented using the same technology. Within a self-service BI environment, it is safe to say that those power users are the pillars of a successful adoption. Business Users or Data Visualizers Users are frequent users of data analytics, with the main goal to extract value from the data they are presented with. They represent the group of the user base which is interested in conducting data analysis and data discovery to better understand their business in order to make better-informed decisions. Presentation and ease of use of the application are key to this type of user group and they are less interested in building new analytics themselves. That being said, some form of creating new charts and loading data is sometimes still of interest to them, albeit on a very basic level. Timeliness, the relevance of data, and the user experience are most relevant to them. They are the ones who are slicing and dicing the data and drilling down into dimensions, and who are keen to click around in the app to obtain valuable information. Usually, a group of users belong to the same department and have a power user overseeing them with regard to questions but also in receiving feedback on how the dashboard can be improved even more. Their interaction with IT is mostly limited to requesting access and resolving unexpected technical errors. Consumers or Data Readers Consumers usually form the largest user group of a self-service BI analytics solution. They are the end recipients of the insights and data analytics that have been produced and, normally, are only interested in distilled information which is presented to them in a digested form. They are usually the kind of users who are happy with a report, either digital or in printed form, which summarizes highlights and lowlights in a few pages, requiring no interaction at all. Also, they are most sensitive to the timeliness and availability of their reports. While usually the largest audience, at the same time this user group leverages the self-service capabilities of a BI tool the least. This poses a licensing challenge, as those users don’t take full advantage of the functionality on offer, but are costing the full amount in order to access the reports. It is therefore not uncommon to assign this type of user group a bucket of login access passes or not give them access to the self-service BI platform at all and give them the information they need in (digitally) printed format or within presentations, prepared by users. IT or Data Overseers IT represents the technical user group within this context, who sit in the background and develop and manage the framework within which the self-service BI solution operates. They are the backbone of the deployment and ensure the environment is set up correctly to cater for the various use cases required by the above-described user groups. At the same time, they ensure a security policy is in place and maintained and they introduce a governance framework for deployment, data quality, and best practices. They are in effect responsible for overseeing the power users and helping them with technical questions, but at the same time ensuring terms and definition as well as the look and feel is consistent and maintained across all apps. With self-service BI, IT plays a lesser role in actually developing the dashboards but assumes a more mentoring position, where training, consultation, and advisory in best practices are conducted. While working closely with power users, IT also provides technical support to users and liaises with the IT infrastructure to ensure the server infrastructure is fit for purpose and up and running to serve the users. This also includes upgrading the platform where required and enriching it with additional functionality if and when available. Bringing them together The previous four groups can be distinguished within a typical enterprise environment; however, this is not to say hybrid or fewer user groups are not viable models for self-service BI. It is an evolutionary process in how an organization adapts self-service data analytics with a lot of dependencies on available skills, competing established solutions, culture, and appetite on new technologies. It usually begins with IT being the first users in a newly deployed self-service environment, not only setting up the infrastructure but also developing the first apps for a couple of consumers. Power users then follow up; generally, they are the business sponsors themselves who are often big fans of data analytics, modifying the app to their liking and promoting it to their users. The user base emerges with the success of the solution, where analytics are integrated into their business as the usual process. The last group, the consumers, is mostly the last type of user group that is established, which more often than not doesn’t have actual access to the platform itself, but rather receives printouts, email summaries with screenshots, or PowerPoint presentations. Due to licensing cost and the size of the consumer audience, it is not always easy to give them access to the self-service platform; hence, most of the time, an automated and streamlined PDF printing process is the most elegant solution to cater to this type of user group. At the same time, the size of the deployment also determines the number of various user groups. In small enterprise environments, it will be mostly power users and IT who will be using self-service. This greatly simplifies the approach as well as the setup considerations. If you found the above excerpt useful, make sure you check out the book Mastering Qlik Sense to learn helpful tips and tricks to perform effective Business Intelligence using Qlik Sense. Read more: How Qlik Sense is driving self-service Business Intelligence What we learned from Qlik Qonnections 2018 How self-service analytics is changing modern-day businesses
Read more
  • 0
  • 0
  • 23621

article-image-tools-for-reinforcement-learning
Pravin Dhandre
21 May 2018
4 min read
Save for later

Top 5 tools for reinforcement learning

Pravin Dhandre
21 May 2018
4 min read
After deep learning, reinforcement Learning (RL), the hottest branch of Artificial Intelligence that is finding speedy adoption in tech-driven companies. Simply put, reinforcement learning is all about algorithms tracking previous actions or behaviour and providing optimized decisions using trial-and-error principle. Read How Reinforcement Learning works to know more. It might sound theoretical but gigantic firms like Google and Uber have tested out this exceptional mechanism and have been highly successful in cutting edge applied robotics fields such as self driving vehicles. Other top giants including Amazon, Facebook and Microsoft have centralized their innovations around deep reinforcement learning across Automotive, Supply Chain, Networking, Finance and Robotics. With such humongous achievement, reinforcement learning libraries has caught the Artificial Intelligence developer communities’ eye and have gained prime interest for training agents and reinforcing the behavior of the trained agents. In fact, researchers believe in the tremendous potential of reinforcement learning to address unsolved real world challenges like material discovery, space exploration, drug discovery etc and build much smarter artificial intelligence solutions. In this article, we will have a look at the most promising open source tools and libraries to start building your reinforcement learning projects on. OpenAI Gym OpenAI Gym, the most popular environment for developing and comparing reinforcement learning models, is completely compatible with high computational libraries like TensorFlow. The Python based rich AI simulation environment offers support for training agents on classic games like Atari as well as for other branches of science like robotics and physics such as Gazebo simulator and MuJoCo simulator. The Gym environment also offers APIs which facilitate feeding observations along with rewards back to agents. OpenAI has also recently released a new platform, Gym Retro made up of 58 varied and specific scenarios from Sonic the Hedgehog, Sonic the Hedgehog 2, and Sonic 3 games. Reinforcement learning enthusiasts and AI game developers can register for this competition. Read: How to build a cartpole game using OpenAI Gym TensorFlow This is an another well-known open-source library by Google followed by more than 95,000 developers everyday in areas of natural language processing, intelligent chatbots, robotics, and more. The TensorFlow community has developed an extended version called TensorLayer providing popular RL modules that can be easily customized and assembled for tackling real-world machine learning challenges. The TensorFlow community allows for the framework development in most popular languages such as Python, C, Java, JavaScript and Go. Google & its TensorFlow team are in the process of coming up with a Swift-compatible version to enable machine learning  on Apple environment. Read How to implement Reinforcement Learning with TensorFlow Keras Keras presents simplicity in implementing neural networks with just a few lines of codes with faster execution. It provides senior developers and principal scientists with a high-level interface to high tensor computation framework, TensorFlow and centralizes on the model architecture. So, if you have any existing RL models written in TensorFlow, just pick the Keras framework and you can transfer the learning to the related machine learning problem. DeepMind Lab DeepMind Lab is a Google 3D platform with customization for agent-based AI research. It is utilized to understand how self-sufficient artificial agents learn complicated tasks in large, partially observed environments. With the victory of its AlphaGo program against go players, in early 2016, DeepMind captured the public’s attention. With its three hubs spread across London, Canada and France, the DeepMind team is focussing on core AI fundamentals which includes building a single AI system backed by state-of-the-art methods and distributional reinforcement learning. To know more about how DeepMind Lab works, read How Google’s DeepMind is creating images with artificial intelligence. Pytorch Pytorch, open sourced by Facebook, is another well-known deep learning library adopted by many reinforcement learning researchers. It was recent preferred almost unanimously by top 10 finishers in Kaggle competition. With dynamic neural networks and strong GPU acceleration, Rl practitioners use it extensively to conduct experiments on implementing policy-based agent and to create new adventures. One crazy research project is Playing GridWorld, where Pytorch unchained its capabilities with renowned RL algorithms like policy gradient and simplified Actor-Critic method. Summing It Up There you have it, the top tools and libraries for reinforcement learning. The list doesn't end here, as there is a lot of work happening in developing platforms and libraries for scaling reinforcement learning. Frameworks like RL4J, RLlib are already in development and very soon would be full-fledged available for developers to simulate their models in their preferred coding language.
Read more
  • 0
  • 0
  • 22187
article-image-famous-gang-of-four-design-patterns
Sugandha Lahoti
10 Jul 2018
14 min read
Save for later

Meet the famous 'Gang of Four' design patterns

Sugandha Lahoti
10 Jul 2018
14 min read
A design pattern is a reusable solution to a recurring problem in software design. It is not a finished piece of code but a template that helps to solve a particular problem or family of problems. In this article, we will talk about the Gang of Four design patterns. The gang of four, authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, initiated the concept of Design Pattern in Software development. These authors are collectively known as Gang of Four (GOF). We are going to focus on the design patterns from the Scala point of view. All different design patterns can be grouped into the following types: Creational Structural Behavioral These three groups contain the famous Gang of Four design patterns.  In the next few subsections, we will explain the main characteristics of the listed groups and briefly present the actual design patterns that fall under them. This article is an excerpt from Scala Design Patterns - Second Edition by Ivan Nikolov. In this book, you will learn how to write efficient, clean, and reusable code with Scala. Creational design patterns The creational design patterns deal with object creation mechanisms. Their purpose is to create objects in a way that is suitable to the current situation, which could lead to unnecessary complexity and the need for extra knowledge if they were not there. The main ideas behind the creational design patterns are as follows: Knowledge encapsulation about the concrete classes Hiding details about the actual creation and how objects are combined We will be focusing on the following creational design patterns in this article: The abstract factory design pattern The factory method design pattern The lazy initialization design pattern The singleton design pattern The object pool design pattern The builder design pattern The prototype design pattern The following few sections give a brief definition of what these patterns are. The abstract factory design pattern This is used to encapsulate a group of individual factories that have a common theme. When used, the developer creates a specific implementation of the abstract factory and uses its methods in the same way as in the factory design pattern to create objects. It can be thought of as another layer of abstraction that helps to instantiate classes. The factory method design pattern This design pattern deals with the creation of objects without explicitly specifying the actual class that the instance will have—it could be something that is decided at runtime based on many factors. Some of these factors can include operating systems, different data types, or input parameters. It gives developers the peace of mind of just calling a method rather than invoking a concrete constructor. The lazy initialization design pattern This design pattern is an approach to delay the creation of an object or the evaluation of a value until the first time it is needed. It is much more simplified in Scala than it is in an object-oriented language such as Java. The singleton design pattern This design pattern restricts the creation of a specific class to just one object. If more than one class in the application tries to use such an instance, then this same instance is returned for everyone. This is another design pattern that can be easily achieved with the use of basic Scala features. The object pool design pattern This design pattern uses a pool of objects that are already instantiated and ready for use. Whenever someone requires an object from the pool, it is returned, and after the user is finished with it, it puts it back into the pool manually or automatically. A common use for pools are database connections, which generally are expensive to create; hence, they are created once and then served to the application on request. The builder design pattern The builder design pattern is extremely useful for objects with many possible constructor parameters that would otherwise require developers to create many overrides for the different scenarios an object could be created in. This is different to the factory design pattern, which aims to enable polymorphism. Many of the modern libraries today employ this design pattern. As we will see later, Scala can achieve this pattern really easily. The prototype design pattern This design pattern allows object creation using a clone() method from an already created instance. It can be used in cases when a specific resource is expensive to create or when the abstract factory pattern is not desired. Structural design patterns Structural design patterns exist in order to help establish the relationships between different entities in order to form larger structures. They define how each component should be structured so that it has very flexible interconnecting modules that can work together in a larger system. The main features of structural design patterns include the following: The use of the composition to combine the implementations of multiple objects Help build a large system made of various components by maintaining a high level of flexibility In this article, we will focus on the following structural design patterns: The adapter design pattern The decorator design pattern The bridge design pattern The composite design pattern The facade design pattern The flyweight design pattern The proxy design pattern The next subsections will put some light on what these patterns are about. The adapter design pattern The adapter design pattern allows the interface of an existing class to be used from another interface. Imagine that there is a client who expects your class to expose a doWork() method. You might have the implementation ready in another class, but the method is called differently and is incompatible. It might require extra parameters too. This could also be a library that the developer doesn't have access to for modifications. This is where the adapter can help by wrapping the functionality and exposing the required methods. The adapter is useful for integrating the existing components. In Scala, the adapter design pattern can be easily achieved using implicit classes. The decorator design pattern Decorators are a flexible alternative to sub classing. They allow developers to extend the functionality of an object without affecting other instances of the same class. This is achieved by wrapping an object of the extended class into one that extends the same class and overrides the methods whose functionality is supposed to be changed. Decorators in Scala can be built much more easily using another design pattern called stackable traits. The bridge design pattern The purpose of the bridge design pattern is to decouple an abstraction from its implementation so that the two can vary independently. It is useful when the class and its functionality vary a lot. The bridge reminds us of the adapter pattern, but the difference is that the adapter pattern is used when something is already there and you cannot change it, while the bridge design pattern is used when things are being built. It helps us to avoid ending up with multiple concrete classes that will be exposed to the client. You will get a clearer understanding when we delve deeper into the topic, but for now, let's imagine that we want to have a FileReader class that supports multiple different platforms. The bridge will help us end up with FileReader, which will use a different implementation, depending on the platform. In Scala, we can use self-types in order to implement a bridge design pattern. The composite design pattern The composite is a partitioning design pattern that represents a group of objects that are to be treated as only one object. It allows developers to treat individual objects and compositions uniformly and to build complex hierarchies without complicating the source code. An example of composite could be a tree structure where a node can contain other nodes, and so on. The facade design pattern The purpose of the facade design pattern is to hide the complexity of a system and its implementation details by providing the client with a simpler interface to use. This also helps to make the code more readable and to reduce the dependencies of the outside code. It works as a wrapper around the system that is being simplified and, of course, it can be used in conjunction with some of the other design patterns mentioned previously. The flyweight design pattern The flyweight design pattern provides an object that is used to minimize memory usage by sharing it throughout the application. This object should contain as much data as possible. A common example given is a word processor, where each character's graphical representation is shared with the other same characters. The local information then is only the position of the character, which is stored internally. The proxy design pattern The proxy design pattern allows developers to provide an interface to other objects by wrapping them. They can also provide additional functionality, for example, security or thread-safety. Proxies can be used together with the flyweight pattern, where the references to shared objects are wrapped inside proxy objects. Behavioral design patterns Behavioral design patterns increase communication flexibility between objects based on the specific ways they interact with each other. Here, creational patterns mostly describe a moment in time during creation, structural patterns describe a more or less static structure, and behavioral patterns describe a process or flow. They simplify this flow and make it more understandable. The main features of behavioral design patterns are as follows: What is being described is a process or flow The flows are simplified and made understandable They accomplish tasks that would be difficult or impossible to achieve with objects In this article, we will focus our attention on the following behavioral design patterns: The value object design pattern The null object design pattern The strategy design pattern The command design pattern The chain of responsibility design pattern The interpreter design pattern The iterator design pattern The mediator design pattern The memento design pattern The observer design pattern The state design pattern The template method design pattern The visitor design pattern The following subsections will give brief definitions of the aforementioned behavioral design patterns. The value object design pattern Value objects are immutable and their equality is based not on their identity, but on their fields being equal. They can be used as data transfer objects, and they can represent dates, colors, money amounts, numbers, and more. Their immutability makes them really useful in multithreaded programming. The Scala programming language promotes immutability, and value objects are something that naturally occur there. The null object design pattern Null objects represent the absence of a value and they define a neutral behavior. This approach removes the need to check for null references and makes the code much more concise. Scala adds the concept of optional values, which can replace this pattern completely. The strategy design pattern The strategy design pattern allows algorithms to be selected at runtime. It defines a family of interchangeable encapsulated algorithms and exposes a common interface to the client. Which algorithm is chosen could depend on various factors that are determined while the application runs. In Scala, we can simply pass a function as a parameter to a method, and depending on the function, a different action will be performed. The command design pattern This design pattern represents an object that is used to store information about an action that needs to be triggered at a later time. The information includes the following: The method name The owner of the method Parameter values The client then decides which commands need to be executed and when by the invoker. This design pattern can easily be implemented in Scala using the by-name parameters feature of the language. The chain of responsibility design pattern The chain of responsibility is a design pattern where the sender of a request is decoupled from its receiver. This way, it makes it possible for multiple objects to handle the request and to keep logic nicely separated. The receivers form a chain where they pass the request and, if possible, they process it, and if not, they pass it to the next receiver. There are variations where a handler might dispatch the request to multiple other handlers at the same time. This somehow reminds us of function composition, which in Scala can be achieved using the stackable traits design pattern. The interpreter design pattern The interpreter design pattern is based on the ability to characterize a well-known domain with a language with a strict grammar. It defines classes for each grammar rule in order to interpret sentences in the given language. These classes are likely to represent hierarchies as grammar is usually hierarchical as well. Interpreters can be used in different parsers, for example, SQL or other languages. The iterator design pattern The iterator design pattern is when an iterator is used to traverse a container and access its elements. It helps to decouple containers from the algorithms performed on them. What an iterator should provide is sequential access to the elements of an aggregate object without exposing the internal representation of the iterated collection. The mediator design pattern This pattern encapsulates the communication between different classes in an application. Instead of interacting directly with each other, objects communicate through the mediator, which reduces the dependencies between them, lowers the coupling, and makes the overall application easier to read and maintain. The memento design pattern This pattern provides the ability to roll back an object to its previous state. It is implemented with three objects—originator, caretaker, and memento. The originator is the object with the internal state; the caretaker will modify the originator, and a memento is an object that contains the state that the originator returns. The originator knows how to handle a memento in order to restore its previous state. The observer design pattern This design pattern allows the creation of publish/subscribe systems. There is a special object called subject that automatically notifies all the observers when there are any changes in the state. This design pattern is popular in various GUI toolkits and generally where event handling is needed. It is also related to reactive programming, which is enabled by libraries such as Akka. We will see an example of this towards the end of this book. The state design pattern This design pattern is similar to the strategy design pattern, and it uses a state object to encapsulate different behavior for the same object. It improves the code's readability and maintainability by avoiding the use of large conditional statements. The template method design pattern This design pattern defines the skeleton of an algorithm in a method and then passes some of the actual steps to the subclasses. It allows developers to alter some of the steps of an algorithm without having to modify its structure. An example of this could be a method in an abstract class that calls other abstract methods, which will be defined in the children. The visitor design pattern The visitor design pattern represents an operation to be performed on the elements of an object structure. It allows developers to define a new operation without changing the original classes. Scala can minimize the verbosity of this pattern compared to the pure object-oriented way of implementing it by passing functions to methods. Choosing a design pattern As we already saw, there are a huge number of design patterns. In many cases, they are suitable to be used in combinations as well. Unfortunately, there is no definite answer regarding how to choose the concept of designing our code. There are many factors that could affect the final decision, and you should ask yourselves the following questions: Is this piece of code going to be fairly static or will it change in the future? Do we have to dynamically decide what algorithms to use? Is our code going to be used by others? Do we have an agreed interface? What libraries are we planning to use, if any? Are there any special performance requirements or limitations? This is by no means an exhaustive list of questions. There is a huge amount of factors that could dictate our decision in how we build our systems. It is, however, really important to have a clear specification, and if something seems missing, it should always be checked first. By now, we have a fair idea about what a design pattern is and how it can affect the way we write our code. We've iterated through the most famous Gang of Four design patterns out there, and we have outlined the main differences between them. To know more on how to incorporate functional patterns effectively in real-life applications, read our book Scala Design Patterns - Second Edition. Implementing 5 Common Design Patterns in JavaScript (ES8) An Introduction to Node.js Design Patterns
Read more
  • 0
  • 0
  • 22116

article-image-top-4-business-intelligence-tools
Ed Bowkett
04 Dec 2014
4 min read
Save for later

Top 4 Business Intelligence Tools

Ed Bowkett
04 Dec 2014
4 min read
With the boom of data analytics, Business Intelligence has taken something of a front stage in recent years, and as a result, a number of Business Intelligence (BI) tools have appeared. This allows a business to obtain a reliable set of data, faster and easier, and to set business objectives. This will be a list of the more prominent tools and will list advantages and disadvantages of each. Pentaho Pentaho was founded in 2004 and offers a suite, among others, of open source BI applications under the name, Pentaho Business Analytics. It has two suites, enterprise and community. It allows easy access to data and even easier ways of visualizing this data, from a variety of different sources including Excel and Hadoop and it covers almost every platform ranging from mobile, Android and iPhone, through to Windows and even Web-based. However with the pros, there are cons, which include the Pentaho Metadata Editor in Pentaho, which is difficult to understand, and the documentation provided offers few solutions for this tool (which is a key component). Also, compared to other tools, which we will mention below, the advanced analytics in Pentaho need improving. However, given that it is open source, there is continual improvement. Tableau Founded in 2003, Tableau also offers a range of suites, focusing on three products: Desktop, Server, and Public. Some benefits of using Tableau over other products include ease of use and a pretty simple UI involving drag and drop tools, which allows pretty much everyone to use it. Creating a highly interactive dashboard with various sources to obtain your data from is simple and quick. To sum up, Tableau is fast. Incredibly fast! There are relatively few cons when it comes to Tableau, but some automated features you would usually expect in other suites aren’t offered for most of the processes and uses here. Jaspersoft As well as being another suite that is open source, Jaspersoft ships with a number of data visualization, data integration, and reporting tools. Added to the small licensing cost, Jaspersoft is justifiably one of the leaders in this area. It can be used with a variety of databases including Cassandra, CouchDB, MongoDB, Neo4j, and Riak. Other benefits include ease of installation and the functionality of the tools in Jaspersoft is better than most competitors on the market. However, the documentation has been claimed to have been lacking in helping customers dive deeper into Jaspersoft, and if you do customize it the customer service can no longer assist you if it breaks. However, given the functionality/ability to extend it, these cons seem minor. Qlikview Qlikview is one of the oldest Business Intelligence software tools in the market, having been around since 1993, it has multiple features, and as a result, many pros and cons that include ones that I have mentioned for previous suites. Some advantages of Qlikview are that it takes a very small amount of time to implement and it’s incredibly quick; quicker than Tableau in this regard! It also has 64-bit in-memory, which is among the best in the market. Qlikview also has good data mining tools, good features (having been in the market for a long time), and a visualization function. These aspects make it so much easier to deal with than others on the market. The learning curve is relatively small. Some cons in relation to Qlikview include that while Qlikview is easy to use, Tableau is seen as the better suite to use to analyze data in depth. Qlikview also has difficulties integrating map data, which other BI tools are better at doing. This list is not definitive! It lays out some open source tools that companies and individuals can use to help them analyze data to prepare business performance KPIs. There are other tools that are used by businesses including Microsoft BI tools, Cognos, MicroStrategy, and Oracle Hyperion. I’ve chosen to explore some BI tools that are quick to use out of the box and are incredibly popular and expanding in usage.
Read more
  • 0
  • 0
  • 21987

article-image-why-arc-welder-is-good-choice-to-run-android-apps-on-desktop-using-chrome-browser
Guest Contributor
21 Aug 2019
5 min read
Save for later

Why ARC Welder is a good choice to run Android apps on desktop using the Chrome browser

Guest Contributor
21 Aug 2019
5 min read
Running Android apps on Chrome is a complicated task, especially when you are not using a Chromebook. However, it should be noted that Chrome has an in-built tool (now) that allows users to test Android-based application in the browser, launched by Google in 2015, known as App Runtime for Chrome (ARC) Welder. What is ARC Welder? The ARC Welder tool allows Android applications to run on Google Chrome for Windows, OS X, Linux systems. ARC Welder is basically for app developers who want to test run their Android applications within Chrome OS and confront any runtime errors or bugs. The tool was launched as an experimental concept for developers previously but later was available for download for everyone. Main functions: ARC Welder offers an easy and streamlined method for application testing. At the first step, the user will be required to add the bundle into the existing application menu. Users are provided with the freedom to write to any file or a folder which can be opened via ARC software assistance. Any beginner developer or a user can choose to leave the settings page as they (settings) will be set to default if skipped or left unsaved. Here’s how to run ARC Welder tool for running android application: Download or upgrade to the latest version of Google Chrome browser. Download and run the ARC Welder application from the Google Chrome Store. Add a third-party APK file host. After downloading the APK app file in your laptop/PC, click Open. Select the mode “Phone” and ‘Tablet”--either of which you wish you run the application on. Lastly, click on the "Launch App" button. Points to remember for running ARC Welder on Chrome: ARC Welder tool only works with APK files, which means that in order to get your Android Applications successfully run on your laptop, you will be required to download APK files of the specific application you wish to install on your desktop. You can find APK files from the below mentioned APK databases: APKMirror AndroidAPKsFree AndroidCrew APKPure Points to remember before installing ARC Welder: Only one specific application can be loaded at one single time. On the basis of your application, you will be required to select the portrait/landscape mode manually. Tablet and Phone mode specifications are necessary as they have different outcomes. ARC Welder is based on Android 4.4. This means that users are required to test applications that support Android 4.4 or above. Note: Points 1 and 2 can be considered as limitations of ARC Welder. Pros: Cross-platform as it works on Windows, Linux, Mac and Chrome OS. Developed by Google which means the software will evolve quickly considering the upgrade pace of Android (also developed by Google). Allows application testing in Google Chrome web browser. Cons: Not all Google Play Services are supported by ARC Welder. ARC Welder only supports “ARM” APK format. Keyboard input is spotty. Takes 2-3 minutes to install as compared to other testing applications like BlueStacks (one-click install). No accelerometer simulation. Users are required to choose the “orientation” mode before getting into the detailed interface of ARC Welder. There are competitors of ARC Welder like BlueStacks which is often preferred by a majority of developers due to its one-click install feature. Although ARC Welder gives a much better performance, it still ranks at 7th (BlueStacks stands at 6th). Apart from shortcomings, ARC Welder continues to evolve and secure its faithful following of beginners to expert developers. In the next section, we’ll have a look at the few alternatives to ARC Welder. Few Alternatives: Genymotion - It is an easy to use android emulator for your computer. It works as a virtual machine and enables you to run mobile apps and games on your desktop and laptop efficiently. Andy - It is an operating system that works as an android emulator for your computer. It allows you to open up mobile apps and play mobile games in a version of the Android operating system on your Mac or Windows desktop. BlueStacks - It is a website that has been built to format mobile apps and make them compatible to the desktop computers. It also helps to open ip mobile gaming apps on computers and laptops. MEmu - It is the fastest android emulator that allows you to play mobile games on PC for free. It is known for its performance, and user experience. It supports most of the popular mobile apps and games, and various system configurations. Koplayer - It is a free, one of the best android emulator for PC that supports video recording, multiple accounts, and keyboard. Built on x86 architecture, it is more stable and faster than Bluestacks. Not to mention, it is very interesting to load android apps on chrome browser on your computer and laptop, no matter which operating system you are using. It could be very useful to run android apps on chrome browser when Google play store and Apple app store are prone to exploitation. Although right now we can run a few apps using ARC Welder, one at a time, surely the developers will add more functionality and take this to the next level. So, are you ready to use mobile apps play mobile games on your PC using ARC Welder? If you have any questions, leave in the comment box, we’ll respond back. Author Bio Hilary is a writer, content manager at Androidcrew.com. She loves to share the knowledge and insights she gained along the way with others.    
Read more
  • 0
  • 0
  • 21755
article-image-most-commonly-used-java-machine-learning-libraries
Fatema Patrawala
10 Sep 2018
15 min read
Save for later

6 most commonly used Java Machine learning libraries

Fatema Patrawala
10 Sep 2018
15 min read
There are over 70 Java-based open source machine learning projects listed on the MLOSS.org website and probably many more unlisted projects live at university servers, GitHub, or Bitbucket. In this article, we will review the major machine learning libraries and platforms in Java, the kind of problems they can solve, the algorithms they support, and the kind of data they can work with. This article is an excerpt taken from Machine learning in Java, written by Bostjan Kaluza and published by Packt Publishing Ltd. Weka Weka, which is short for Waikato Environment for Knowledge Analysis, is a machine learning library developed at the University of Waikato, New Zealand, and is probably the most well-known Java library. It is a general-purpose library that is able to solve a wide variety of machine learning tasks, such as classification, regression, and clustering. It features a rich graphical user interface, command-line interface, and Java API. You can check out Weka at http://www.cs.waikato.ac.nz/ml/weka/. At the time of writing this book, Weka contains 267 algorithms in total: data pre-processing (82), attribute selection (33), classification and regression (133), clustering (12), and association rules mining (7). Graphical interfaces are well-suited for exploring your data, while Java API allows you to develop new machine learning schemes and use the algorithms in your applications. Weka is distributed under GNU General Public License (GNU GPL), which means that you can copy, distribute, and modify it as long as you track changes in source files and keep it under GNU GPL. You can even distribute it commercially, but you must disclose the source code or obtain a commercial license. In addition to several supported file formats, Weka features its own default data format, ARFF, to describe data by attribute-data pairs. It consists of two parts. The first part contains header, which specifies all the attributes (that is, features) and their type; for instance, nominal, numeric, date, and string. The second part contains data, where each line corresponds to an instance. The last attribute in the header is implicitly considered as the target variable, missing data are marked with a question mark. For example, the Bob instance written in an ARFF file format would be as follows: @RELATION person_dataset @ATTRIBUTE `Name`  STRING @ATTRIBUTE `Height`  NUMERIC @ATTRIBUTE `Eye color`{blue, brown, green} @ATTRIBUTE `Hobbies`  STRING @DATA 'Bob', 185.0, blue, 'climbing, sky diving' 'Anna', 163.0, brown, 'reading' 'Jane', 168.0, ?, ? The file consists of three sections. The first section starts with the @RELATION <String> keyword, specifying the dataset name. The next section starts with the @ATTRIBUTE keyword, followed by the attribute name and type. The available types are STRING, NUMERIC, DATE, and a set of categorical values. The last attribute is implicitly assumed to be the target variable that we want to predict. The last section starts with the @DATA keyword, followed by one instance per line. Instance values are separated by comma and must follow the same order as attributes in the second section. Weka's Java API is organized in the following top-level packages: weka.associations: These are data structures and algorithms for association rules learning, including Apriori, predictive apriori, FilteredAssociator, FP-Growth, Generalized Sequential Patterns (GSP), Hotspot, and Tertius. weka.classifiers: These are supervised learning algorithms, evaluators, and data structures. Thepackage is further split into the following components: weka.classifiers.bayes: This implements Bayesian methods, including naive Bayes, Bayes net, Bayesian logistic regression, and so on weka.classifiers.evaluation: These are supervised evaluation algorithms for nominal and numerical prediction, such as evaluation statistics, confusion matrix, ROC curve, and so on weka.classifiers.functions: These are regression algorithms, including linear regression, isotonic regression, Gaussian processes, support vector machine, multilayer perceptron, voted perceptron, and others weka.classifiers.lazy: These are instance-based algorithms such as k-nearest neighbors, K*, and lazy Bayesian rules weka.classifiers.meta: These are supervised learning meta-algorithms, including AdaBoost, bagging, additive regression, random committee, and so on weka.classifiers.mi: These are multiple-instance learning algorithms, such as citation k-nn, diverse density, MI AdaBoost, and others weka.classifiers.rules: These are decision tables and decision rules based on the separate-and-conquer approach, Ripper, Part, Prism, and so on weka.classifiers.trees: These are various decision trees algorithms, including ID3, C4.5, M5, functional tree, logistic tree, random forest, and so on weka.clusterers: These are clustering algorithms, including k-means, Clope, Cobweb, DBSCAN hierarchical clustering, and farthest. weka.core: These are various utility classes, data presentations, configuration files, and so on. weka.datagenerators: These are data generators for classification, regression, and clustering algorithms. weka.estimators: These are various data distribution estimators for discrete/nominal domains, conditional probability estimations, and so on. weka.experiment: These are a set of classes supporting necessary configuration, datasets, model setups, and statistics to run experiments. weka.filters: These are attribute-based and instance-based selection algorithms for both supervised and unsupervised data preprocessing. weka.gui: These are graphical interface implementing explorer, experimenter, and knowledge flowapplications. Explorer allows you to investigate dataset, algorithms, as well as their parameters, and visualize dataset with scatter plots and other visualizations. Experimenter is used to design batches of experiment, but it can only be used for classification and regression problems. Knowledge flows implements a visual drag-and-drop user interface to build data flows, for example, load data, apply filter, build classifier, and evaluate. Java-ML for machine learning Java machine learning library, or Java-ML, is a collection of machine learning algorithms with a common interface for algorithms of the same type. It only features Java API, therefore, it is primarily aimed at software engineers and programmers. Java-ML contains algorithms for data preprocessing, feature selection, classification, and clustering. In addition, it features several Weka bridges to access Weka's algorithms directly through the Java-ML API. It can be downloaded from http://java-ml.sourceforge.net; where, the latest release was in 2012 (at the time of writing this book). Java-ML is also a general-purpose machine learning library. Compared to Weka, it offers more consistent interfaces and implementations of recent algorithms that are not present in other packages, such as an extensive set of state-of-the-art similarity measures and feature-selection techniques, for example, dynamic time warping, random forest attribute evaluation, and so on. Java-ML is also available under the GNU GPL license. Java-ML supports any type of file as long as it contains one data sample per line and the features are separated by a symbol such as comma, semi-colon, and tab. The library is organized around the following top-level packages: net.sf.javaml.classification: These are classification algorithms, including naive Bayes, random forests, bagging, self-organizing maps, k-nearest neighbors, and so on net.sf.javaml.clustering: These are clustering algorithms such as k-means, self-organizing maps, spatial clustering, Cobweb, AQBC, and others net.sf.javaml.core: These are classes representing instances and datasets net.sf.javaml.distance: These are algorithms that measure instance distance and similarity, for example, Chebyshev distance, cosine distance/similarity, Euclidian distance, Jaccard distance/similarity, Mahalanobis distance, Manhattan distance, Minkowski distance, Pearson correlation coefficient, Spearman's footrule distance, dynamic time wrapping (DTW), and so on net.sf.javaml.featureselection: These are algorithms for feature evaluation, scoring, selection, and ranking, for instance, gain ratio, ReliefF, Kullback-Liebler divergence, symmetrical uncertainty, and so on net.sf.javaml.filter: These are methods for manipulating instances by filtering, removing attributes, setting classes or attribute values, and so on net.sf.javaml.matrix: This implements in-memory or file-based array net.sf.javaml.sampling: This implements sampling algorithms to select a subset of dataset net.sf.javaml.tools: These are utility methods on dataset, instance manipulation, serialization, Weka API interface, and so on net.sf.javaml.utils: These are utility methods for algorithms, for example, statistics, math methods, contingency tables, and others Apache Mahout The Apache Mahout project aims to build a scalable machine learning library. It is built atop scalable, distributed architectures, such as Hadoop, using the MapReduce paradigm, which is an approach for processing and generating large datasets with a parallel, distributed algorithm using a cluster of servers. Mahout features console interface and Java API to scalable algorithms for clustering, classification, and collaborative filtering. It is able to solve three business problems: item recommendation, for example, recommending items such as people who liked this movie also liked…; clustering, for example, of text documents into groups of topically-related documents; and classification, for example, learning which topic to assign to an unlabeled document. Mahout is distributed under a commercially-friendly Apache License, which means that you can use it as long as you keep the Apache license included and display it in your program's copyright notice. Mahout features the following libraries: org.apache.mahout.cf.taste: These are collaborative filtering algorithms based on user-based and item-based collaborative filtering and matrix factorization with ALS org.apache.mahout.classifier: These are in-memory and distributed implementations, includinglogistic regression, naive Bayes, random forest, hidden Markov models (HMM), and multilayer perceptron org.apache.mahout.clustering: These are clustering algorithms such as canopy clustering, k-means, fuzzy k-means, streaming k-means, and spectral clustering org.apache.mahout.common: These are utility methods for algorithms, including distances, MapReduce operations, iterators, and so on org.apache.mahout.driver: This implements a general-purpose driver to run main methods of other classes org.apache.mahout.ep: This is the evolutionary optimization using the recorded-step mutation org.apache.mahout.math: These are various math utility methods and implementations in Hadoop org.apache.mahout.vectorizer: These are classes for data presentation, manipulation, andMapReduce jobs Apache Spark Apache Spark, or simply Spark, is a platform for large-scale data processing builds atop Hadoop, but, in contrast to Mahout, it is not tied to the MapReduce paradigm. Instead, it uses in-memory caches to extract a working set of data, process it, and repeat the query. This is reported to be up to ten times as fast as a Mahout implementation that works directly with disk-stored data. It can be grabbed from https://spark.apache.org. There are many modules built atop Spark, for instance, GraphX for graph processing, Spark Streaming for processing real-time data streams, and MLlib for machine learning library featuring classification, regression, collaborative filtering, clustering, dimensionality reduction, and optimization. Spark's MLlib can use a Hadoop-based data source, for example, Hadoop Distributed File System (HDFS) or HBase, as well as local files. The supported data types include the following: Local vector is stored on a single machine. Dense vectors are presented as an array of double-typed values, for example, (2.0, 0.0, 1.0, 0.0); while sparse vector is presented by the size of the vector, an array of indices, and an array of values, for example, [4, (0, 2), (2.0, 1.0)]. Labeled point is used for supervised learning algorithms and consists of a local vector labeled with a double-typed class values. Label can be class index, binary outcome, or a list of multiple class indices (multiclass classification). For example, a labeled dense vector is presented as [1.0, (2.0, 0.0, 1.0, 0.0)]. Local matrix stores a dense matrix on a single machine. It is defined by matrix dimensions and a single double-array arranged in a column-major order. Distributed matrix operates on data stored in Spark's Resilient Distributed Dataset (RDD), which represents a collection of elements that can be operated on in parallel. There are three presentations: row matrix, where each row is a local vector that can be stored on a single machine, row indices are meaningless; and indexed row matrix, which is similar to row matrix, but the row indices are meaningful, that is, rows can be identified and joins can be executed; and coordinate matrix, which is used when a row cannot be stored on a single machine and the matrix is very sparse. Spark's MLlib API library provides interfaces to various learning algorithms and utilities as outlined in the following list: org.apache.spark.mllib.classification: These are binary and multiclass classification algorithms, including linear SVMs, logistic regression, decision trees, and naive Bayes org.apache.spark.mllib.clustering: These are k-means clustering org.apache.spark.mllib.linalg: These are data presentations, including dense vectors, sparse vectors, and matrices org.apache.spark.mllib.optimization: These are the various optimization algorithms used as low-level primitives in MLlib, including gradient descent, stochastic gradient descent, update schemes for distributed SGD, and limited-memory BFGS org.apache.spark.mllib.recommendation: These are model-based collaborative filtering implemented with alternating least squares matrix factorization org.apache.spark.mllib.regression: These are regression learning algorithms, such as linear least squares, decision trees, Lasso, and Ridge regression org.apache.spark.mllib.stat: These are statistical functions for samples in sparse or dense vector format to compute the mean, variance, minimum, maximum, counts, and nonzero counts org.apache.spark.mllib.tree: This implements classification and regression decision tree-learning algorithms org.apache.spark.mllib.util: These are a collection of methods to load, save, preprocess, generate, and validate the data Deeplearning4j Deeplearning4j, or DL4J, is a deep-learning library written in Java. It features a distributed as well as a single-machinedeep-learning framework that includes and supports various neural network structures such as feedforward neural networks, RBM, convolutional neural nets, deep belief networks, autoencoders, and others. DL4J can solve distinct problems, such as identifying faces, voices, spam or e-commerce fraud. Deeplearning4j is also distributed under Apache 2.0 license and can be downloaded from http://deeplearning4j.org. The library is organized as follows: org.deeplearning4j.base: These are loading classes org.deeplearning4j.berkeley: These are math utility methods org.deeplearning4j.clustering: This is the implementation of k-means clustering org.deeplearning4j.datasets: This is dataset manipulation, including import, creation, iterating, and so on org.deeplearning4j.distributions: These are utility methods for distributions org.deeplearning4j.eval: These are evaluation classes, including the confusion matrix org.deeplearning4j.exceptions: This implements exception handlers org.deeplearning4j.models: These are supervised learning algorithms, including deep belief network, stacked autoencoder, stacked denoising autoencoder, and RBM org.deeplearning4j.nn: These are the implementation of components and algorithms based on neural networks, such as neural network, multi-layer network, convolutional multi-layer network, and so on org.deeplearning4j.optimize: These are neural net optimization algorithms, including back propagation, multi-layer optimization, output layer optimization, and so on org.deeplearning4j.plot: These are various methods for rendering data org.deeplearning4j.rng: This is a random data generator org.deeplearning4j.util: These are helper and utility methods MALLET Machine Learning for Language Toolkit (MALLET), is a large library of natural language processing algorithms and utilities. It can be used in a variety of tasks such as document classification, document clustering, information extraction, and topic modeling. It features command-line interface as well as Java API for several algorithms such as naive Bayes, HMM, Latent Dirichlet topic models, logistic regression, and conditional random fields. MALLET is available under Common Public License 1.0, which means that you can even use it in commercial applications. It can be downloaded from http://mallet.cs.umass.edu. MALLET instance is represented by name, label, data, and source. However, there are two methods to import data into the MALLET format, as shown in the following list: Instance per file: Each file, that is, document, corresponds to an instance and MALLET accepts the directory name for the input. Instance per line: Each line corresponds to an instance, where the following format is assumed: the instance_name label token. Data will be a feature vector, consisting of distinct words that appear as tokens and their occurrence count. The library comprises the following packages: cc.mallet.classify: These are algorithms for training and classifying instances, including AdaBoost, bagging, C4.5, as well as other decision tree models, multivariate logistic regression, naive Bayes, and Winnow2. cc.mallet.cluster: These are unsupervised clustering algorithms, including greedy agglomerative, hill climbing, k-best, and k-means clustering. cc.mallet.extract: This implements tokenizers, document extractors, document viewers, cleaners, and so on. cc.mallet.fst: This implements sequence models, including conditional random fields, HMM, maximum entropy Markov models, and corresponding algorithms and evaluators. cc.mallet.grmm: This implements graphical models and factor graphs such as inference algorithms, learning, and testing. For example, loopy belief propagation, Gibbs sampling, and so on. cc.mallet.optimize: These are optimization algorithms for finding the maximum of a function, such as gradient ascent, limited-memory BFGS, stochastic meta ascent, and so on. cc.mallet.pipe: These are methods as pipelines to process data into MALLET instances. cc.mallet.topics: These are topics modeling algorithms, such as Latent Dirichlet allocation, four-level pachinko allocation, hierarchical PAM, DMRT, and so on. cc.mallet.types: This implements fundamental data types such as dataset, feature vector, instance, and label. cc.mallet.util: These are miscellaneous utility functions such as command-line processing, search, math, test, and so on. To design, build, and deploy your own machine learning applications by leveraging key Java machine learning libraries, check out this book Machine learning in Java, published by Packt Publishing. 5 JavaScript machine learning libraries you need to know A non programmer’s guide to learning Machine learning Why use JavaScript for machine learning?  
Read more
  • 0
  • 0
  • 21585

article-image-brief-history-minecraft-modding
Aaron Mills
03 Jun 2015
7 min read
Save for later

A Brief History of Minecraft Modding

Aaron Mills
03 Jun 2015
7 min read
Minecraft modding has been around since nearly the beginning. During that time it has gone through several transformations or “eras." The early days and early mods looked very different from today. I first became involved in the community during Mid-Beta, so everything that happened before then is second hand knowledge. A great deal has been lost to the sands of time, but the important stops along the way are remembered, as we shall explore. Minecraft has gone through several development stages over the years. Interestingly, these stages also correspond to the various “eras” of Minecraft Modding. Minecraft Survival was first experienced as Survival Test during Classic, then again in the Indev stage, which gave way to Infdev, then to Alpha and Beta before finally reaching Release. But before all that was Classic. Classic was released in May of 2009 and development continued into September of that year. Classic saw the introduction of Survival and Multiplayer. During this period of Minecraft’s history, modding was in its infancy. On the one hand, Server modding thrived during this stage with several different Server mods available. (These mods were the predecessors to Bukkit, which we will cover later.) Generally, the purpose of these mods was to give server admins more tools for maintaining their servers. On the other hand, however, Client side mods, ones that add new content, didn’t really start appearing until the Alpha stage. Alpha was released in late June of 2010, and it would continue for the rest of the year. Prior to Alpha, came Indev and Infdev, but there isn’t much evidence of any mods during that time period, possibly because of the lack of Multiplayer in Indev and Infdev. Alpha brought the return of Multiplayer, and during this time Minecraft began to see its first simple Client mods. Initially it was just simple modification of existing content: adding support for Higher Resolution textures, new arrow types, bug fixes, compass modifications, etc. The mods were simple and small. This began to change, though, beginning with the creation of the Minecraft Coder Pack, which was later renamed the Mod Coder Pack, commonly known as MCP. (One of the primary creators of MCP, Michael “Searge” Stoyke, now actually works for Mojang.) MCP saw its first release for Alpha 1.1.2_01 sometime in mid 2010. Despite being easily decompiled, Minecraft code was also obfuscated. Obfuscation is when you take all the meaningful names and words in the code and replace it with non-human readable nonsense. The computer can still make sense of it just fine, but humans have a hard time. MCP resolved this limitation by applying meaningful names to the code, making modding significantly easier than ever before. At the same time, but developing completely independently, was the server mod hMod, which gave some simple but absolutely necessary tools to server admins. However, hMod was in trouble as the main dev was MIA. This situation eventually led to the creation of Bukkit, a server mod designed from the ground up to support “plugins” and do everything that hMod couldn’t do. Bukkit was created by a group of people who were also eventually hired by Mojang: Nathan 'Dinnerbone' Adams, Erik 'Grum' Broes, Warren 'EvilSeph' Loo, and Nathan 'Tahg' Gilbert. Bukkit went on to become possibly the most popular Minecraft mod ever created. Many in fact believe its existence is largely responsible for the popularity of online Minecraft servers. However, it will remain largely incompatible with client side mods for some time. Not to be left behind, the client saw another major development late in the year: Risugami’s ModLoader. ModLoader was transformational. Prior to the existence of ModLoader, if you wanted to use two mods, you would have to manually merge the code, line by line, yourself. There were many common tasks that couldn’t be done without editing Minecraft’s base code, things such as adding new blocks and items. ModLoader changed that by creating a framework where simple mods could hook into ModLoader code to perform common tasks that previously required base edits. It was simple, and it would never really expand beyond its original scope. Still, it led modding into a new era. Minecraft Beta, what many call the “Golden Age” of modding, was released just before Christmas in 2010 and would continue through 2011. Beta saw the rise of many familiar mods that are still recognized today, including my own mod, Railcraft. Also IndustrialCraft, Buildcraft, Redpower, and Better than Wolves all saw their start during this period. These were major mods that added many new blocks and features to Minecraft. Additionally, the massive Aether mod, which recently received a modern reboot, was also released during Beta. These mods and more redefined the meaning of “Minecraft Mods”. They existed on a completely new scale, sometimes completely changing the game. But there were still flaws. Mods were still painful to create and painful to use. You couldn’t use IndustrialCraft and Buildcraft at the same time; they just edited too many of the same base files. ModLoader only covered the most common base edits, barely touching the code, and not enough for a major mod. Additionally, to use a mod, you still had to manually insert code into the Minecraft jar, a task that turned many players off of modding. Seeing that their mods couldn’t be used together, the creators of several major mods launched a new project. They would call it Minecraft Forge. Started by Eloraam of Redpower and SpaceToad of Buildcraft, it would see rapid adoption by many of the major mods of the time. Forge built on top of ModLoader, greatly expanding the number of base hooks and allowing many more mods to work together than was previously possible. This ushered in the true “Golden Age” of modding, which would continue from Beta and into Release. Minecraft 1.0 was released in November of 2011, heralding Minecraft’s “Official” release. Around the same time, client modding was undergoing a shift. Many of the most prominent developers were moving on to other things, including the entire Forge team. For the most part, their mods would survive without them, but some would not. Redpower, for example ceased all development in late 2012. Eloraam, SpaceToad, and Flowerchild would hand the reigns of Forge off to LexManos, a relatively unknown name at the time. The “Golden Age” was at an end, but it was replaced by an explosion of new mods and modding was becoming even more popular than ever. The new Forge team, consisting mainly of LexManos and cpw, would bring many new innovations to modding. Eventually they even developed a replacement for Risugami’s ModLoader, naming it ForgeModLoader and incorporating it into Forge. Users would no longer be required to muck around with Minecraft’s internals to install mods. Innovation has continued to the present day, and mods for Minecraft have become too numerous to count. However, the picture for server mods hasn’t been so rosy. Bukkit, the long dominant server mod, suffered a killing blow in 2014. Licensing conflicts developed between the original creators and maintainers, largely revolving around the who “owned” the project after the primary maintainers resigned. Ultimately, one of the most prolific maintainers used a technicality to invalidate the rights of the project to use his code, effectively killing the entire project. A replacement has yet to develop, leaving the server community limping along on increasingly outdated code. But one shouldn’t be too concerned about the future. There have been challenges in the past, but nearly every time a project died, it was soon replaced by something even better. Minecraft has one of the largest, most vibrant, and most mainstream modding communities ever to exist. It’s had a long and varied history, and this has been just a brief glimpse into that heritage. There are many more events, both large and small, that have helped shape the community. May the future of Minecraft continue to be as interesting. About the Author Aaron Mills was born in 1983 and lives in the Pacific Northwest, which is a land rich in lore, trees, and rain. He has a Bachelor's Degree in Computer Science and studied at Washington State University Vancouver. He is best known for his work on the Minecraft Mod, Railcraft, but has also contributed significantly to the Minecraft Mods of Forestry and Buildcraft as well some contributions to the Minecraft Forge project.
Read more
  • 0
  • 0
  • 21581