The neural network model for Retailrocket recommendations
In this model, we set two different variables for latent factors for users and items but set both of them to 5
. The reader is welcome to experiment with different values of latent factors:
n_lf_visitor = 5 n_lf_item = 5
- Build the item and visitor embeddings and vector space representations the same way we built earlier:
item_input = Input(shape=[1],name='Items') item_embed = Embedding(n_items + 1, n_lf_visitor, name='ItemsEmbedding')(item_input) item_vec = Flatten(name='ItemsFlatten')(item_embed) visitor_input = Input(shape=[1],name='Visitors') visitor_embed = Embedding(n_visitors + 1, n_lf_item, name='VisitorsEmbedding')(visitor_input) visitor_vec = Flatten(name='VisitorsFlatten')(visitor_embed)
- Instead of creating a dot product layer, we concatenate the user and visitor representations, and then apply fully connected...