Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Streamlit for Data Science

You're reading from   Streamlit for Data Science Create interactive data apps in Python

Arrow left icon
Product type Paperback
Published in Sep 2023
Publisher Packt
ISBN-13 9781803248226
Length 300 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tyler Richards Tyler Richards
Author Profile Icon Tyler Richards
Tyler Richards
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. An Introduction to Streamlit FREE CHAPTER 2. Uploading, Downloading, and Manipulating Data 3. Data Visualization 4. Machine Learning and AI with Streamlit 5. Deploying Streamlit with Streamlit Community Cloud 6. Beautifying Streamlit Apps 7. Exploring Streamlit Components 8. Deploying Streamlit Apps with Hugging Face and Heroku 9. Connecting to Databases 10. Improving Job Applications with Streamlit 11. The Data Project – Prototyping Projects in Streamlit 12. Streamlit Power Users 13. Other Books You May Enjoy
14. Index

Deploying Streamlit with Streamlit Community Cloud

So far in this book, we have focused on Streamlit app development, from creating complex visualizations to deploying and creating Machine Learning (ML) models. In this chapter, we will learn how to deploy these applications so that they can be shared with anyone with internet access. This is a crucial part of Streamlit apps as, without the ability to deploy a Streamlit app, friction still exists for users or consumers of your work. If we believe that Streamlit removes the friction between creating data science analysis/products/models and sharing them with others, then we must also believe that the ability to widely share apps is just as crucial as the ease of development.

There are three main ways to deploy Streamlit apps: through a product created by Streamlit called Streamlit Community Cloud, through a cloud provider such as Amazon Web Services or Heroku, or through Hugging Face via Hugging Face Spaces. Deploying on AWS and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image