Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Perform data collection, data processing, wrangling, visualization, and model building using Python

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781789955248
Length 478 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Avinash Navlani Avinash Navlani
Author Profile Icon Avinash Navlani
Avinash Navlani
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Foundation for Data Analysis
2. Getting Started with Python Libraries FREE CHAPTER 3. NumPy and pandas 4. Statistics 5. Linear Algebra 6. Section 2: Exploratory Data Analysis and Data Cleaning
7. Data Visualization 8. Retrieving, Processing, and Storing Data 9. Cleaning Messy Data 10. Signal Processing and Time Series 11. Section 3: Deep Dive into Machine Learning
12. Supervised Learning - Regression Analysis 13. Supervised Learning - Classification Techniques 14. Unsupervised Learning - PCA and Clustering 15. Section 4: NLP, Image Analytics, and Parallel Computing
16. Analyzing Textual Data 17. Analyzing Image Data 18. Parallel Computing Using Dask 19. Other Books You May Enjoy

Comparing data analysis and data science

Data analysis is the process in which data is explored in order to discover patterns that help us make business decisions. It is one of the subdomains of data science. Data analysis methods and tools are widely utilized in several business domains by business analysts, data scientists, and researchers. Its main objective is to improve productivity and profits. Data analysis extracts and queries data from different sources, performs exploratory data analysis, visualizes data, prepares reports, and presents it to the business decision-making authorities.

On the other hand, data science is an interdisciplinary area that uses a scientific approach to extract insights from structured and unstructured data. Data science is a union of all terms, including data analytics, data mining, machine learning, and other related domains. Data science is not only limited to exploratory data analysis and is used for developing models and prediction algorithms such as stock price, weather, disease, fraud forecasts, and recommendations such as movie, book, and music recommendations.

The roles of data analysts and data scientists

A data analyst collects, filters, processes, and applies the required statistical concepts to capture patterns, trends, and insights from data and prepare reports for making decisions. The main objective of the data analyst is to help companies solve business problems using discovered patterns and trends. The data analyst also assesses the quality of the data and handles the issues concerning data acquisition. A data analyst should be proficient in writing SQL queries, finding patterns, using visualization tools, and using reporting tools Microsoft Power BI, IBM Cognos, Tableau, QlikView, Oracle BI, and more.

Data scientists are more technical and mathematical than data analysts. Data scientists are research- and academic-oriented, whereas data analysts are more application-oriented. Data scientists are expected to predict a future event, whereas data analysts extract significant insights out of data. Data scientists develop their own questions, while data analysts find answers to given questions. Finally, data scientists focus on what is going to happen, whereas data analysts focus on what has happened so far. We can summarize these two roles using the following table:

Features

Data Scientist

Data Analyst

Background

Predict future events and scenarios based on data

Discover meaningful insights from the data.

Role

Formulate questions that can profit the business

Solve the business questions to make decisions.

Type of data

Work on both structured and unstructured data

Only work on structured data

Programming

Advanced programming

Basic programming

Skillset

Knowledge of statistics, machine learning algorithms, NLP, and deep learning

Knowledge of statistics, SQL, and data visualization

Tools

R, Python, SAS, Hadoop, Spark, TensorFlow, and Keras

Excel, SQL, R, Tableau, and QlikView

Now that we know what defines a data analyst and data scientist, as well as how they are different from each other, let's have a look at the various skills that you would need to become one of them.

You have been reading a chapter from
Python Data Analysis - Third Edition
Published in: Feb 2021
Publisher: Packt
ISBN-13: 9781789955248
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image