Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Data Analysis

You're reading from   Practical Data Analysis Pandas, MongoDB, Apache Spark, and more

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher
ISBN-13 9781785289712
Length 338 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Hector Cuesta Hector Cuesta
Author Profile Icon Hector Cuesta
Hector Cuesta
Dr. Sampath Kumar Dr. Sampath Kumar
Author Profile Icon Dr. Sampath Kumar
Dr. Sampath Kumar
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Preprocessing Data 3. Getting to Grips with Visualization 4. Text Classification 5. Similarity-Based Image Retrieval 6. Simulation of Stock Prices 7. Predicting Gold Prices 8. Working with Support Vector Machines 9. Modeling Infectious Diseases with Cellular Automata 10. Working with Social Graphs 11. Working with Twitter Data 12. Data Processing and Aggregation with MongoDB 13. Working with MapReduce 14. Online Data Analysis with Jupyter and Wakari 15. Understanding Data Processing using Apache Spark

An introduction to Apache Spark

Apache Spark is an open source cluster computer system with implicit data parallelism and fault tolerance. Spark was originally created at AMPlab from UC Berkeley; the main goal of Spark is to be fast to run and read and to apply in-memory processing. Spark allows you to manipulate distributed datasets, such as local collections. In this section, we will present the basic operations with Spark programming model and its ecosystem.

Tip

We can find more information about pandas from its website:

http://spark.apache.org/

The Spark ecosystem

Spark comes with a lot of high-level libraries for SQL querying, machine learning, graph processing, and streaming data. These libraries provide all inclusive environment ready to use. The following figure shows the complete Spark ecosystem:

The Spark ecosystem

Take a look at the following:

  • Spark Core API:

    The characteristics of Spark Core API are as follows:

    • It is the execution engine that allows all the other functionalities built on top
    • It provides...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime