Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
NumPy Cookbook

You're reading from   NumPy Cookbook If you're a Python developer with basic NumPy skills, the 70+ recipes in this brilliant cookbook will boost your skills in no time. Learn to raise productivity levels and code faster and cleaner with the open source mathematical library.

Arrow left icon
Product type Paperback
Published in Oct 2012
Publisher Packt
ISBN-13 9781849518925
Length 226 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (17) Chapters Close

NumPy Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Winding Along with IPython 2. Advanced Indexing and Array Concepts FREE CHAPTER 3. Get to Grips with Commonly Used Functions 4. Connecting NumPy with the Rest of the World 5. Audio and Image Processing 6. Special Arrays and Universal Functions 7. Profiling and Debugging 8. Quality Assurance 9. Speed Up Code with Cython 10. Fun with Scikits Index

Simulating trading at random


In the previous recipe, we tried out a trading idea. However, we have no benchmark that can tell us if the result we got was any good. It is common in such cases to trade at random, under the assumption that we should be able to beat a random process. We will simulate trading by taking some random days from a trading year. This should illustrate working with random numbers using NumPy.

Getting ready

If necessary, install Matplotlib. Refer to the See Also section for the corresponding recipe.

How to do it...

First, we need an array filled with random integers.

  1. Generate random indices.

    Generate random integers with the NumPy randint function. This will be linked to random days of a trading year:

    return numpy.random.randint(0, high, size)
  2. Simulate trades.

    Simulate trades with the random indices from the previous step. Use the NumPy take function to extract random close prices from the array of step 1:

    buys = numpy.take(close, get_indices(len(close), nbuys))
    sells = numpy...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime