Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Natural Language Processing Fundamentals

You're reading from   Natural Language Processing Fundamentals Build intelligent applications that can interpret the human language to deliver impactful results

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher
ISBN-13 9781789954043
Length 374 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Dwight Gunning Dwight Gunning
Author Profile Icon Dwight Gunning
Dwight Gunning
Sohom Ghosh Sohom Ghosh
Author Profile Icon Sohom Ghosh
Sohom Ghosh
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Natural Language Processing FREE CHAPTER 2. Basic Feature Extraction Methods 3. Developing a Text classifier 4. Collecting Text Data from the Web 5. Topic Modeling 6. Text Summarization and Text Generation 7. Vector Representation 8. Sentiment Analysis Appendix

Introduction

The previous chapters laid a firm foundation for NLP. But now we will go deeper into a key topic – one that gives us surprising insights into how a language works and how some of the key advances in human computer interaction are facilitated. At the heart of NLP is the simple trick of representing text as numbers. This helps software algorithms to perform the sophisticated computations that are required to understand the meaning of text.

Text representation can be as simple as encoding each word as an integer. But it can also include using an array of numbers for each word. Each of these representations help machine learning programs to function effectively.

This chapter begins by discussing vectors, how text can be represented as vectors, and how vectors can be composed to represent complex speech. We will walk through the various representations in both directions – learning how to encode text as vectors as well as how to retrieve text from vectors...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime