In the previous chapter, we implemented several generic algorithms that operated on containers. Consider one of those algorithms again:
template<typename Container>
void double_each_element(Container& arr)
{
for (int i=0; i < arr.size(); ++i) {
arr.at(i) *= 2;
}
}
This algorithm is defined in terms of the lower-level operations .size() and .at(). This works reasonably well for a container type such as array_of_ints or std::vector, but it doesn't work nearly so well for, say, a linked list such as the previous chapter's list_of_ints:
class list_of_ints {
struct node {
int data;
node *next;
};
node *head_ = nullptr;
node *tail_ = nullptr;
int size_ = 0;
public:
int size() const { return size_; }
int& at(int i) {
if (i >= size_...