Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Tableau 2021

You're reading from   Mastering Tableau 2021 Implement advanced business intelligence techniques and analytics with Tableau

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781800561649
Length 792 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
David Baldwin David Baldwin
Author Profile Icon David Baldwin
David Baldwin
Marleen Meier Marleen Meier
Author Profile Icon Marleen Meier
Marleen Meier
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Getting Up to Speed – A Review of the Basics 2. All About Data – Getting Your Data Ready FREE CHAPTER 3. Tableau Prep Builder 4. All About Data – Joins, Blends, and Data Structures 5. Table Calculations 6. All About Data – Data Densification, Cubes, and Big Data 7. Level of Detail Calculations 8. Beyond the Basic Chart Types 9. Mapping 10. Tableau for Presentations 11. Visualization Best Practices and Dashboard Design 12. Advanced Analytics 13. Improving Performance 14. Interacting with Tableau Server/Online 15. Programming Tool Integration 16. Another Book You May Enjoy
17. Index

Blends

Relationships make data blending a little less needed and it can be seen as legacy functionality. But for the sake of completeness and for older Tableau versions (below 2020.2) let's consider a summary of data blending in the following sections. In a nutshell, data blending allows you to merge multiple, disparate data sources into a single view. Understanding the following four points will give you a grasp on the main points regarding data blending:

  • Data blending is typically used to merge data from multiple data sources. Although as of Tableau 10, joins are possible between multiple data sources, there are still cases when data blending is the only possible option to merge data from two or more sources. In the following sections, we will see a practical example that demonstrates such a case.
  • Data blending requires a shared dimension. A date dimension is often a good candidate for blending multiple data sources.
  • Data blending aggregates and then...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime