Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Scientific Computing with R

You're reading from   Mastering Scientific Computing with R Employ professional quantitative methods to answer scientific questions with a powerful open source data analysis environment

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783555253
Length 432 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (12) Chapters Close

Preface 1. Programming with R 2. Statistical Methods with R FREE CHAPTER 3. Linear Models 4. Nonlinear Methods 5. Linear Algebra 6. Principal Component Analysis and the Common Factor Model 7. Structural Equation Modeling and Confirmatory Factor Analysis 8. Simulations 9. Optimization 10. Advanced Data Management Index

SEM model fitting and estimation methods


In an earlier section, we mentioned that to ultimately find a good solution, software has to use trial and error to come up with an implied covariance matrix that matches the observed covariance matrix as well as possible. The question is what does "as well as possible" mean? The answer to this is that the software must try to minimize some particular criterion, usually some sort of discrepancy function. Just what that criterion is depends on the estimation method used. The most commonly used estimation methods in SEM include:

  • Ordinary least squares (OLS) also called unweighted least squares

  • Generalized least squares (GLS)

  • Maximum likelihood (ML)

There are a number of other estimation methods as well, some of which can be done in R, but here we will stick with describing the most common ones. In general, OLS is the simplest and computationally cheapest estimation method. GLS is computationally more demanding, and ML is computationally more intensive....

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image