Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering PyTorch

You're reading from   Mastering PyTorch Build powerful neural network architectures using advanced PyTorch 1.x features

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781789614381
Length 450 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: PyTorch Overview
2. Chapter 1: Overview of Deep Learning using PyTorch FREE CHAPTER 3. Chapter 2: Combining CNNs and LSTMs 4. Section 2: Working with Advanced Neural Network Architectures
5. Chapter 3: Deep CNN Architectures 6. Chapter 4: Deep Recurrent Model Architectures 7. Chapter 5: Hybrid Advanced Models 8. Section 3: Generative Models and Deep Reinforcement Learning
9. Chapter 6: Music and Text Generation with PyTorch 10. Chapter 7: Neural Style Transfer 11. Chapter 8: Deep Convolutional GANs 12. Chapter 9: Deep Reinforcement Learning 13. Section 4: PyTorch in Production Systems
14. Chapter 10: Operationalizing PyTorch Models into Production 15. Chapter 11: Distributed Training 16. Chapter 12: PyTorch and AutoML 17. Chapter 13: PyTorch and Explainable AI 18. Chapter 14: Rapid Prototyping with PyTorch 19. Other Books You May Enjoy

Summary

RL is one of the fundamental branches of machine learning and is currently one of the hottest, if not the hottest, areas of research and development. RL-based AI breakthroughs such as AlphaGo from Google's DeepMind have further increased enthusiasm and interest in the field. This chapter provided an overview of RL and DRL and walked us through a hands-on exercise of building a DQN model using PyTorch.

First, we briefly review the basic concepts of RL. We then explored the different kinds of RL algorithms that have been developed over the years. We took a closer look at one such RL algorithm – the Q-learning algorithm. We then discussed the theory behind Q-learning, including the Bellman equation and the epsilon-greedy-action mechanism. We also explained how Q-learning differs from other RL algorithms, such as policy optimization methods.

Next, we explored a specific type of Q-learning model – the deep Q-learning model. We discussed the key concepts...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image