- Apply a thresholding operation using cv2.threshold() with a threshold value of 100 and using the cv2.THRESH_BINARY thresholding type.
- Apply an adaptive thresholding operation using cv2.adapativeThreshold() ,cv2.ADAPTIVE_THRESH_MEAN_C, C=2 and blockSize=9.
- Apply Otsu's thresholding using the cv2.THRESH_BINARY thresholding type.
- Apply triangle thresholding using the cv2.THRESH_BINARY thresholding type.
- Apply Otsu's thresholding using scikit-image.
- Apply triangle thresholding using scikit-image.
- Apply Niblack's thresholding using scikit-image.
- Apply Sauvola's thresholding using scikit-image and a window size of 25.
- Modify the thresholding_example.py script in order to make use of np.arange(), with the purpose of defining the threshold values to apply to the cv2.threshold() function. Afterwards, call the cv2.threshold() function with the defined threshold...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine