Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Java for Data Science

You're reading from   Mastering Java for Data Science Analytics and more for production-ready applications

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781782174271
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alexey Grigorev Alexey Grigorev
Author Profile Icon Alexey Grigorev
Alexey Grigorev
Arrow right icon
View More author details
Toc

Supervised Learning - Classification and Regression

In previous chapters, we looked at how to pre-process data in Java and how to do Exploratory Data Analysis. Now, as we covered the foundation, we are ready to start creating machine learning models.

First, we start with supervised learning. In the supervised settings, we have some information attached to each observation, called labels, and we want to learn from it, and predict it for observations without labels.

There are two types of labels: the first are discrete and finite, such as true/false or buy/sell, and the second are continuous, such as salary or temperature. These types correspond to two types of supervised learning: classification and regression. We will talk about them in this chapter.

This chapter covers the following points:

  • Classification problems
  • Regression problems
  • Evaluation metrics for each type
  • An overview of the available implementations...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime