Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Concurrency Programming with Java 9, Second Edition

You're reading from   Mastering Concurrency Programming with Java 9, Second Edition Fast, reactive and parallel application development

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785887949
Length 516 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Javier Fernández González Javier Fernández González
Author Profile Icon Javier Fernández González
Javier Fernández González
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. The First Step - Concurrency Design Principles 2. Working with Basic Elements - Threads and Runnables FREE CHAPTER 3. Managing Lots of Threads - Executors 4. Getting the Most from Executors 5. Getting Data from Tasks - The Callable and Future Interfaces 6. Running Tasks Divided into Phases - The Phaser Class 7. Optimizing Divide and Conquer Solutions - The Fork/Join Framework 8. Processing Massive Datasets with Parallel Streams - The Map and Reduce Model 9. Processing Massive Datasets with Parallel Streams - The Map and Collect Model 10. Asynchronous Stream Processing - Reactive Streams 11. Diving into Concurrent Data Structures and Synchronization Utilities 12. Testing and Monitoring Concurrent Applications 13. Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

An introduction to streams


A stream is a sequence of data (is not a data structure) that allows you to apply a sequence of operations in a sequential or concurrent way to filter, convert, sort, reduce, or organize those elements to obtain a final object. For example, if you have a stream with the data of your employees, you can use a stream to:

  • Count the total number of employees (this is an expensive terminal operation)
  • Calculate the average salary of all employees who live in a particular place
  • Obtain a list of the employees who haven't met their objectives
  • Any operation that implies work with all or some of the employees

Streams are greatly influenced by functional programming (the Scala programming language provides a very similar mechanism), and work with lambda expressions. Stream API resembles LINQ (short for Language-Integrated Query) queries available in C# language and, to some extent, could be compared with SQL queries.

In the following sections, we will explain the basic characteristics...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image