Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R R gives you access to the cutting-edge software you need to prepare data for machine learning. No previous knowledge required ‚Äì this book will take you methodically through every stage of applying machine learning.

Arrow left icon
Product type Paperback
Published in Oct 2013
Publisher Packt
ISBN-13 9781782162148
Length 396 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Machine Learning with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Introducing Machine Learning 2. Managing and Understanding Data FREE CHAPTER 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Index

Summary


Machine learning originated at the intersection of statistics, database science, and computer science. It is a powerful tool, capable of finding actionable insight in large quantities of data. Still, caution must be used in order to avoid common abuses of machine learning in the real world.

In conceptual terms, learning involves the abstraction of data into a structured representation, and the generalization of this structure into action. In more practical terms, a machine learner uses data containing examples and features of the concept to be learned, and summarizes this data in the form of a model, which is then used for predictive or descriptive purposes. These can be further divided into specific tasks including classification, numeric prediction, pattern detection, and clustering. Among the many options, machine learning algorithms are chosen on the basis of the input data and the learning task.

R provides support for machine learning in the form of community-authored packages. These powerful tools are free to download, but need to be installed before they can be used. In the next chapter, we will further introduce the basic R commands that are used to manage and prepare data for machine learning.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image